1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// Copyright 2005,2013 Michael E. Stillman
#include "exceptions.hpp"
#include "error.h"
#include "mat-linalg.hpp"
////////////////////////////////////////////////////////////////////////////
// dmat code that might have alternate implementations, depending of type //
////////////////////////////////////////////////////////////////////////////
namespace MatrixOps {
void addMultipleTo(DMatZZpFFPACK& C,
const DMatZZpFFPACK::ElementType& a,
const DMatZZpFFPACK& A,
const DMatZZpFFPACK& B)
{
// Compute C := C + a*A*B
// Both DMat, and FFPACK store dense matrices in row major order.
// Note that the leading dimension in gemm arguments is #columns,
// as the matrix is in row-major order
FFLAS::FFLAS_TRANSPOSE tA = FFLAS::FflasNoTrans;
FFLAS::FFLAS_TRANSPOSE tB = FFLAS::FflasNoTrans;
size_t m = A.numRows();
size_t k = A.numColumns();
assert(A.numColumns() == B.numRows());
size_t n = B.numColumns();
assert(C.numRows() == m);
assert(C.numColumns() == n);
DMatZZpFFPACK::ElementType b;
C.ring().init(b);
C.ring().set_from_long(b, 1);
FFLAS::fgemm(C.ring().field(),
tB,
tA,
m,
n,
k,
a,
A.array(),
A.numColumns(),
B.array(),
B.numColumns(),
b,
C.array(),
C.numColumns());
}
void addMultipleTo(DMatZZpFFPACK& C,
const DMatZZpFFPACK& A,
const DMatZZpFFPACK& B)
{
DMatZZpFFPACK::ElementType one;
A.ring().set_from_long(one, 1);
addMultipleTo(C, one, A, B);
}
void subtractMultipleTo(DMatZZpFFPACK& C,
const DMatZZpFFPACK& A,
const DMatZZpFFPACK& B)
{
DMatZZpFFPACK::ElementType minus_one;
A.ring().set_from_long(minus_one, -1);
addMultipleTo(C, minus_one, A, B);
}
void mult(const DMatZZpFFPACK& A, const DMatZZpFFPACK& B, DMatZZpFFPACK& C)
{
// We assume that C is set to the correct size, and is the zero matrix here.
addMultipleTo(C, A, B);
}
}; // namespace MatrixOps
namespace ffpackInterface {
size_t rank(const DMatZZpFFPACK& mat)
{
/// @note 1. matrix data (N) is modified by FFPACK
DMatZZpFFPACK N(mat); // copy of matrix mat.
size_t result = FFPACK::Rank(mat.ring().field(),
mat.numRows(),
mat.numColumns(),
N.array(),
mat.numColumns());
return result;
}
void determinant(const DMatZZpFFPACK& mat, ZZpFFPACK::ElementType& result_det)
{
/// @note 1. matrix data (N) is modified by FFPACK
if (mat.numRows() == 0)
{
// 26 April 2014: this branch is needed as FFPACK gives answer of 0 in
// this case.
mat.ring().set_from_long(result_det, 1);
}
else
{
DMatZZpFFPACK N(mat);
ZZpFFPACK::ElementType det = 0;
result_det = FFPACK::Det(mat.ring().field(),
det,
mat.numRows(),
N.array(),
mat.numColumns());
}
}
bool inverse(const DMatZZpFFPACK& mat, DMatZZpFFPACK& result_inv)
{
assert(mat.numRows() == mat.numColumns());
result_inv.resize(mat.numRows(), mat.numRows());
assert(result_inv.numRows() == mat.numRows());
assert(result_inv.numColumns() == mat.numRows());
if (mat.numRows() == 0)
{
// 26 April 2014: this branch is needed as FFPACK gives answer of 0 in
// this case.
return true;
}
DMatZZpFFPACK N(mat);
size_t n = mat.numRows();
int nullspacedim;
FFPACK::Invert2(
mat.ring().field(), n, N.array(), n, result_inv.array(), n, nullspacedim);
return (nullspacedim == 0);
}
size_t nullSpace(const DMatZZpFFPACK& mat, DMatZZpFFPACK& nullspace)
{
bool right_side = true; // This function is written so that one could set
// right_side to false.
// (It used to be a parameter).
DMatZZpFFPACK N(mat); // copy of mat
size_t nr = mat.numRows();
size_t nc = mat.numColumns();
DMatZZpFFPACK::ElementType* nullspaceFFPACK = 0;
size_t nullspace_dim;
size_t nullspace_leading_dim;
FFPACK::NullSpaceBasis(mat.ring().field(),
(right_side ? FFLAS::FflasRight : FFLAS::FflasLeft),
nr,
nc,
N.array(),
nc,
nullspaceFFPACK,
nullspace_leading_dim,
nullspace_dim);
// std::cerr << "leading dim = " << nullspace_leading_dim << " and dim = "
// << nullspace_dim << std::endl;
if (right_side && nullspace_dim != nullspace_leading_dim)
{
std::cerr << "error: this should not happen!" << std::endl;
}
else if (!right_side && nullspace_leading_dim != nc)
{
std::cerr << "error: this should not happen either!" << std::endl;
}
if (right_side)
nullspace.resize(nc, nullspace_dim);
else
nullspace.resize(nullspace_dim, nr);
std::swap(nullspace.array(), nullspaceFFPACK);
delete[] nullspaceFFPACK;
return nullspace_dim;
}
bool solveLinear(const DMatZZpFFPACK& A,
const DMatZZpFFPACK& B,
bool right_side,
DMatZZpFFPACK& X,
bool declare_A_is_invertible) // this parameter is unused
{
// std::cerr << "inside FFpackSolveLinear" << std::endl;
size_t a_rows = A.numRows();
size_t a_cols = A.numColumns();
size_t b_rows = B.numRows();
size_t b_cols = B.numColumns();
DMatZZpFFPACK copyA(A);
DMatZZpFFPACK copyB(B);
// preallocate the space for the solutions:
size_t x_rows = (right_side ? a_cols : b_rows);
size_t x_cols = (right_side ? b_cols : a_rows);
X.resize(x_rows, x_cols); // sets it to 0 too.
int info = 0; // >0 if the system is inconsistent, ==0 means success
FFPACK::fgesv(A.ring().field(),
(right_side ? FFLAS::FflasLeft : FFLAS::FflasRight),
a_rows,
a_cols,
(right_side ? b_cols : b_rows),
copyA.array(),
a_cols, // leading dim of A
X.array(),
x_cols,
copyB.array(),
b_cols,
&info);
if (info > 0)
{
// the system is inconsistent
return false;
}
return true;
}
bool solveLinear(const DMatZZpFFPACK& A,
const DMatZZpFFPACK& B,
DMatZZpFFPACK& X)
{
return solveLinear(A, B, true, X, false);
}
M2_arrayintOrNull rankProfile(const DMatZZpFFPACK& mat, bool row_profile)
{
DMatZZpFFPACK N(mat);
size_t* prof; // this is where the result will be placed
size_t rk;
if (row_profile)
rk = FFPACK::RowRankProfile(mat.ring().field(),
mat.numRows(),
mat.numColumns(),
N.array(),
mat.numColumns(),
prof);
else
rk = FFPACK::ColumnRankProfile(mat.ring().field(),
mat.numRows(),
mat.numColumns(),
N.array(),
mat.numColumns(),
prof);
M2_arrayint profile = M2_makearrayint(static_cast<int>(rk));
for (size_t i = 0; i < rk; i++) profile->array[i] = static_cast<int>(prof[i]);
delete[] prof;
return profile;
}
void rankProfile(const DMatZZpFFPACK& mat,
bool row_profile,
std::vector<size_t>& result_profile)
{
DMatZZpFFPACK N(mat);
size_t* prof; // this is where the result will be placed
size_t rk;
if (row_profile)
rk = FFPACK::RowRankProfile(mat.ring().field(),
mat.numRows(),
mat.numColumns(),
N.array(),
mat.numColumns(),
prof);
else
rk = FFPACK::ColumnRankProfile(mat.ring().field(),
mat.numRows(),
mat.numColumns(),
N.array(),
mat.numColumns(),
prof);
result_profile.resize(0);
for (size_t i = 0; i < rk; i++) result_profile.push_back(prof[i]);
delete[] prof;
}
}; // namespace ffpackInterface
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|