1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/* Copyright 2007, Michael E. Stillman */
#include "gb-walk.hpp"
#include <assert.h>
#include "comp-gb-declared.hpp"
#include "error.h"
#include "gbring.hpp"
#include "interface/computation.h"
#include "interface/monomial-ordering.h"
#include "reducedgb-marked.hpp"
class Computation;
class Matrix;
class buffer;
class RingElement;
class MonomialOrderMatrix
{
int nvars;
long **order;
public:
MonomialOrderMatrix(const MonomialOrdering *mo);
~MonomialOrderMatrix();
const long *part(int i) const
{
assert(i < nvars);
return order[i];
}
int compare(long *m1, long *m2) const;
int minpart(long *m) const;
// returns the smallest integer i such that part(j) . m = 0 for j < i
long value(int i, long *monom) const;
// return part(i) . monom
MonomialOrdering *toMonomialOrdering() const; // TODO
// Routines needed:
int facet_compare(long *mon1, long *mon2); // TODO
};
////////////////////////////////
GBWalker::GBWalker(MarkedGB *G0, long **order1, long **order2)
: R(G0->get_gb_ring()),
F(G0->get_ambient_FreeModule()),
G(G0),
monorder1(order1), // or create this from the monomial order?
monorder2(order2),
ww(0)
{
// TODO: need to set what else?
//
}
GBWalker::GBWalker(const Matrix *gb_under_order1,
const MonomialOrdering *order1)
{
}
GBWalker *GBWalker::create(const Matrix *gb_under_order1,
const MonomialOrdering *order1)
{
// TODO MES: TO WRITE
return new GBWalker(gb_under_order1, order1);
}
GBWalker::~GBWalker()
{
// TODO MES: TO WRITE
}
bool GBWalker::stop_conditions_ok()
{
// TODO MES: TO WRITE
return true;
}
GBComputation *GBWalker::make_gb(const Matrix *M) const
// return the GB of g, keep = 0 or 1.
{
M2_arrayint weights = M2_makearrayint(R->n_vars());
for (int i = 0; i < R->n_vars(); i++) weights->array[i] = 1;
GBComputation *G0 = GBComputation::choose_gb(M,
false, // collect syz
-1,
weights,
false,
-1,
0,
0
/* , max_reduction_count */
);
G0->set_stop_conditions(false,
NULL,
-1,
-1, // syzygy limit
-1,
-1,
-1,
false,
NULL);
return G0;
}
void GBWalker::initialize()
{
// Initialize the local variables of the computation
state = STATE_compute_w;
ww = 0;
inwwG = 0;
gb_inwwG = 0;
next_to_reduce = 0;
// G is already set
G1 = 0;
}
bool GBWalker::compute_next_w()
// Uses the value of w in the class, and looks at every term of every poly
// in the marked GB which is > the marked term (in order2) trying to find
// the next w to use.
// Returns: true if a w is found
{
// TODO MES: TO WRITE
return true;
}
//////////////////////////////////////////////////////
// GBComputation and Computation inherited routines //
//////////////////////////////////////////////////////
void GBWalker::remove_gb()
{
// MES: TO WRITE
}
void GBWalker::start_computation()
{
if (stop_.always_stop) return; // don't change status
for (;;) switch (state)
{
case STATE_compute_w:
if (!compute_next_w())
{
// We are done!
state = STATE_done;
set_status(COMP_DONE);
return;
}
inwwG = G->get_parallel_lead_terms(ww);
gb_inwwG = make_gb(inwwG);
state = STATE_do_gb;
case STATE_do_gb:
// Now compute the GB object. If not interrupted, go on:
gb_inwwG->start_computation();
if (gb_inwwG->status() == COMP_INTERRUPTED)
{
set_status(COMP_INTERRUPTED);
return;
}
next_to_reduce = 0;
state = STATE_reduce;
case STATE_reduce:
while (next_to_reduce < 0) // TODO: consider the top of the loop
{
H = G->matrix_remainder(
gb_inwwG->get_gb()); // Not quite: need to subtract...
next_to_reduce++;
}
state = STATE_autoreduce;
case STATE_autoreduce:
G->remove_gb();
delete G;
G1 = static_cast<MarkedGB *>(
GBDeclared::create(gb_inwwG->get_initial(-1), H, H, 0, 0));
state = STATE_compute_w;
case STATE_done:
set_status(COMP_DONE);
return;
}
}
const PolynomialRing *GBWalker::get_ring() const
{
// MES: TO WRITE
return 0;
}
Computation /* or null */ *GBWalker::set_hilbert_function(const RingElement *h)
{
// MES: TO WRITE
return 0;
}
const Matrix /* or null */ *GBWalker::get_gb()
{
// MES: TO WRITE
return 0;
}
const Matrix /* or null */ *GBWalker::get_mingens()
{
// MES: TO WRITE
return 0;
}
const Matrix /* or null */ *GBWalker::get_change()
{
// MES: TO WRITE
return 0;
}
const Matrix /* or null */ *GBWalker::get_syzygies()
{
// MES: TO WRITE
return 0;
}
const Matrix /* or null */ *GBWalker::get_initial(int nparts)
{
// MES: TO WRITE
return 0;
}
const Matrix /* or null */ *GBWalker::get_parallel_lead_terms(M2_arrayint w)
{
// MES: TO WRITE
return 0;
}
const Matrix /* or null */ *GBWalker::matrix_remainder(const Matrix *m)
{
// MES: TO WRITE
return 0;
}
M2_bool GBWalker::matrix_lift(const Matrix *m,
const Matrix /* or null */ **result_remainder,
const Matrix /* or null */ **result_quotient)
{
// MES: TO WRITE, should this be written?
*result_remainder = 0;
*result_quotient = 0;
ERROR("rawGBMatrixLift not implemented for GB walks");
return false;
}
int GBWalker::contains(const Matrix *m)
{
// MES: TO WRITE
return -1;
}
void GBWalker::text_out(buffer &o) const
/* This displays statistical information, and depends on the
M2_gbTrace value */
{
// MES: TO WRITE
}
void GBWalker::show() const
/* This displays statistical information, and depends on the
M2_gbTrace value */
{
// MES: TO WRITE
}
int GBWalker::complete_thru_degree() const
// The computation is complete up through this degree.
{
// MES: TO WRITE
return 0;
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e"
// indent-tabs-mode: nil
// End:
|