1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
#ifndef __gbring_hpp_
#define __gbring_hpp_
// Problems to solve:
// a. F,Fsyz
// b. hide Schreyer order completely
// c. Make sure enough is here to do gbZZ
// d. ditto for GB.c
// e. heap: needs to be able to handle F,Fsyz both
// and needs to be able to handle multiplication by a constant
//
// Schreyer order: probably don't keep polynomials in this form?
// or in any case we should be able to change the representation easily
// In any case, it seems like there could have been bugs before...
//
// Implementations of GBRing:
// Schreyer encoded, Schreyer order, no Schreyer
// KK or ZZ
// [polyring,skew,weyl,solvable]
// quotient ideal
#include <M2/math-include.h>
#include "engine-includes.hpp"
#include <iostream>
#include <string>
#include "buffer.hpp"
#include "monoid.hpp"
#include "newdelete.hpp"
#include "ringelem.hpp"
#include "skew.hpp"
#include "style.hpp"
class CoefficientRingZZp;
class FreeModule;
class Ring;
class SolvableAlgebra;
class WeylAlgebra;
class gbvectorHeap;
class stash;
struct gbvector
{
gbvector *next;
ring_elem coeff;
int comp;
int monom[1];
};
struct POLY
{
gbvector *f;
gbvector *fsyz;
};
typedef int *monomial;
class GBRing : public our_new_delete
{
friend class GBKernelComputation;
friend class WeylAlgebra;
friend class SkewPolynomialRing;
// The FreeModule is used for the following:
// (a) degree of an element
// (b) monomial order comparing monomials with different lead components
// (c) Schreyer monomials, if any.
// Using the original free module doesn't quite work for Schreyer orders,
// unless we 'flatten' the Schreyer monomials, AND if we have a flag
// for the monomial order...
// If not Schreyer order, then
// i. WHEN order is considered
// ii. is it UP or DOWN
protected:
bool _schreyer_encoded;
const Monoid *M; // flattened monoid
const Ring *K; // flattened coefficients
bool _coeffs_ZZ; // is K == globalZZ?
CoefficientRingZZp *zzp; // Only set to non-null if coeff ring is ZZ/p
size_t gbvector_size;
stash *mem;
int _nvars;
bool _up_order; // is the free module order up or down?
bool _is_skew;
SkewMultiplication _skew;
int *const
*_skew_monoms; // array 0.._skew.n_skew_vars()-1 of elements of monoid
// Weyl algebra information
// Private data goes into the subclass
bool is_weyl; // true if this is either a Weyl or homog Weyl algebra
const WeylAlgebra *weyl;
bool is_solvable;
const SolvableAlgebra *solvable;
protected:
ring_elem _one;
//////////////////////////
// Pre-allocated values //
//////////////////////////
size_t exp_size; // byte size of exponent vectors
size_t monom_size; // and monomials
//////////////////////////////
// Private support routines //
//////////////////////////////
gbvector *new_raw_term();
void gbvector_remove_term(gbvector *f);
gbvector *gbvector_copy_term(const gbvector *t);
void divide_exponents(const int *exp1, const int *exp2, int *result) const;
// result = exp1 - exp2; No error checking is done.
void exponent_syzygy(const int *exp1, const int *exp2, int *exp3, int *exp4);
virtual gbvector *mult_by_term1(const FreeModule *F,
const gbvector *f,
ring_elem u,
const int *monom,
int comp) = 0;
gbvector *mult_by_term(const FreeModule *F,
const gbvector *f,
ring_elem u,
const int *monom,
int comp);
int skew_mult_sign(int *exp1, int *exp2) const;
// returns -1 if exp1 * exp2 = - sort(exp1,exp2).
// returns 0 if exp1, exp2 are not disjoint for skew comm variables
// returns 1 if exp1 * exp2 = sort(exp1,exp2).
void divide_coeff_exact_to_ZZ(gbvector *f, gmp_ZZ u) const;
void lower_content_ZZ(gbvector *f, mpz_ptr content) const;
void gbvector_remove_content_ZZ(gbvector *f,
gbvector *fsyz,
bool use_denom,
ring_elem &denom) const;
const gbvector *find_coeff(const FreeModule *F,
const gbvector *f,
const gbvector *g) const;
GBRing(const Ring *K0, const Monoid *M0);
public:
// Each of these handles quotients as well
static GBRing *create_PolynomialRing(const Ring *K, const Monoid *M);
static GBRing *create_SkewPolynomialRing(const Ring *K0,
const Monoid *M0,
SkewMultiplication skew0);
static GBRing *create_WeylAlgebra(const Ring *K0,
const Monoid *M0,
const WeylAlgebra *W0);
static GBRing *create_SolvableAlgebra(const Ring *K0,
const Monoid *M0,
const SolvableAlgebra *R);
virtual ~GBRing();
const Monoid *get_flattened_monoid() const { return M; }
const Ring *get_flattened_coefficients() const { return K; }
int n_vars() const { return _nvars; }
void memstats();
//////////////////////
// Ring information //
//////////////////////
// skew commutativity
bool is_skew_commutative() const { return _skew.n_skew_vars() > 0; }
int n_skew_commutative_vars() const { return _skew.n_skew_vars(); }
int skew_variable(int i) const { return _skew.skew_variable(i); }
const int *skew_monomial_var(int i) const { return _skew_monoms[i]; }
// Weyl algebra
bool is_weyl_algebra() const { return is_weyl; }
// returns true if this is a Weyl algebra OR a homog Weyl algebra
// Schreyer order information
bool is_schreyer_encoded() const { return _schreyer_encoded; }
//////////////////////
// exponents support //
//////////////////////
exponents exponents_make();
void exponents_delete(exponents e);
size_t exponent_byte_size() const { return exp_size; }
// use ALLOCATE_EXPONENTS(R->exponent_byte_size())
// to allocate on the stack an uninitialized exponent vector (#ints = nvars+2)
// it will be deallocated at the end of that function
//////////////////////
// gbvector support //
//////////////////////
const ring_elem one() { return _one; } // the element '1' in the base K.
void gbvector_remove(gbvector *f);
gbvector *gbvector_raw_term(ring_elem coeff, const int *monom, int comp);
// Returns coeff*monom*e_sub_i in a free module. If the order is a Schreyer
// order, the 'monom' should already be encoded.
gbvector *gbvector_term(const FreeModule *F, ring_elem coeff, int comp);
// Returns coeff*e_sub_i in F, the monomial is set to 1.
// If comp==0, F is never considered (so it can be NULL)
gbvector *gbvector_term(const FreeModule *F,
ring_elem coeff,
const int *monom,
int comp);
// Returns coeff*mon*e_comp in F. If comp==0, F is never considered (so it
// can be NULL)
gbvector *gbvector_term_exponents(const FreeModule *F,
ring_elem coeff,
const int *exp,
int comp);
// Returns coeff*exp*e_sub_i in F, where exp is an exponent vector.
// If comp==0, F is never considered (so it can be NULL)
gbvector *gbvector_zero() const { return 0; }
void gbvector_sort(const FreeModule *F,
gbvector *&f); // TO BE USED CAREFULLY: gbvector's should
// mostly be kept in monomial order. This is here when the construction
// doesn't satisfy this property.
bool gbvector_is_zero(const gbvector *f) const { return f == 0; }
bool gbvector_is_equal(const gbvector *f, const gbvector *g) const;
// f,g can be both be in F, or both in Fsyz
int gbvector_n_terms(const gbvector *f) const;
#if 0
// // Degrees, using the weight vector _degrees.
// int exponents_weight(const int *e) const;
//
// int gbvector_term_weight(const FreeModule *F,
// const gbvector *f);
//
// void gbvector_weight(const FreeModule *F, const gbvector *f,
// int &result_lead,
// int &result_lo,
// int &result_hi);
//
// int gbvector_degree(const FreeModule *F,
// const gbvector *f);
#endif
void gbvector_multidegree(const FreeModule *F,
const gbvector *f,
int *&result_degree);
// Places the multidegree of the first term of the non-zero poly f into
// result_degree.
int gbvector_compare(const FreeModule *F,
const gbvector *f,
const gbvector *g) const;
gbvector *gbvector_lead_term(int n, const FreeModule *F, const gbvector *f);
gbvector *gbvector_parallel_lead_terms(M2_arrayint w,
const FreeModule *F,
const gbvector *leadv,
const gbvector *v);
void gbvector_get_lead_monomial(const FreeModule *F,
const gbvector *f,
int *result);
// This copies the monomial to result. If a Schreyer order,
// the result will NOT be the total monomial.
void gbvector_get_lead_exponents(const FreeModule *F,
const gbvector *f,
int *result);
// result[0]..result[nvars-1] are set
int gbvector_lead_component(const gbvector *f) { return f->comp; }
void gbvector_mult_by_coeff_to(gbvector *f, ring_elem u);
// We assume that u is non-zero, and that for each coeff c of f, u*c is
// non-zero
gbvector *gbvector_mult_by_coeff(const gbvector *f, ring_elem u);
// We assume that u is non-zero, and that for each coeff c of f, u*c is
// non-zero
void gbvector_add_to_zzp(const FreeModule *F, gbvector *&f, gbvector *&g);
void gbvector_add_to(const FreeModule *F, gbvector *&f, gbvector *&g);
void gbvector_negate_to(gbvector *f) const;
gbvector *gbvector_copy(const gbvector *f);
////////////////
// Arithmetic //
////////////////
void find_reduction_coeffs(const FreeModule *F,
const gbvector *f,
const gbvector *g,
ring_elem &u,
ring_elem &v);
bool find_reduction_coeffs_ZZ(const FreeModule *F,
const gbvector *f,
const gbvector *g,
ring_elem &v);
void find_reduction_monomial(const FreeModule *F,
const gbvector *f,
const gbvector *g,
int &comp,
int *&monom); // there must be enough space here
void gbvector_mult_by_term(const FreeModule *F,
const FreeModule *Fsyz,
ring_elem a,
const int *m, // element of M, a monomial
const gbvector *f,
const gbvector *fsyz,
gbvector *&result,
gbvector *&esult_syz);
// Optionally, this reduces wrt to the defining ideal:
// result_syz (possibly multiplying result by a constant)
// or bith result,result_syz.
// If over a quotient ring, this might reduce result_syz wrt
// to the quotient ideal. This might multiply result by a scalar.
void gbvector_reduce_lead_term(const FreeModule *F,
const FreeModule *Fsyz,
gbvector *flead,
gbvector *&f,
gbvector *&fsyz,
const gbvector *g,
const gbvector *gsyz,
bool use_denom,
ring_elem &denom);
// Reduce f wrt g, where leadmonom(g) divides leadmonom(f)
// If u leadmonom(f) = v x^A leadmonom(g) (as monomials, ignoring lower
// terms),
// then: flead := u * flead
// f := u*f - v*x^A*g
// fsyz := u*fsyz - v*x^A*gsyz
// If use_denom is true, then
// denom is set to u*denom.
void gbvector_reduce_lead_term(const FreeModule *F,
const FreeModule *Fsyz,
gbvector *flead,
gbvector *&f,
gbvector *&fsyz,
const gbvector *g,
const gbvector *gsyz);
// Same as calling gbvector_reduce_lead_term with use_denom=false.
void gbvector_reduce_with_marked_lead_term(const FreeModule *F,
const FreeModule *Fsyz,
gbvector *flead,
gbvector *&f,
gbvector *&fsyz,
const gbvector *ginitial,
const gbvector *g,
const gbvector *gsyz,
bool use_denom,
ring_elem &denom);
bool gbvector_reduce_lead_term_ZZ(const FreeModule *F,
const FreeModule *Fsyz,
gbvector *&f,
gbvector *&fsyz,
const gbvector *g,
const gbvector *gsyz);
// Never multiplies f by anything. IE before(f), after(f) are equiv. mod g.
// this should ONLY be used if K is globalZZ.
// Sets f := f - v*m*g, where the resulting lead coeff of in(before(f)) is
// either 0
// or is the balanced remainder of leadcoeff(f) by leadcoeff(g).
// Returns true iff this remainder is 0.
void gbvector_cancel_lead_terms(const FreeModule *F,
const FreeModule *Fsyz,
const gbvector *f,
const gbvector *fsyz,
const gbvector *g,
const gbvector *gsyz,
gbvector *&result,
gbvector *&result_syz);
void gbvector_replace_2by2_ZZ(const FreeModule *F,
const FreeModule *Fsyz,
gbvector *&f,
gbvector *&fsyz,
gbvector *&g,
gbvector *&gsyz);
void gbvector_combine_lead_terms_ZZ(const FreeModule *F,
const FreeModule *Fsyz,
const gbvector *f,
const gbvector *fsyz,
const gbvector *g,
const gbvector *gsyz,
gbvector *&result,
gbvector *&result_syz);
// If u*x^A*leadmonom(f) + v*x^B*leadmonom(g) = gcd(u,v)*monom (mod lower
// terms),
// set result := u*x^A*f + v*x^B*g
// resultsyz := u*x^A*fsyz + v*x^B*gyz
// To keep in mind:
// (a) Schreyer orders
// (b) Quotient ideal
// Currently: this does nothing with the quotient ring
void reduce_lead_term_heap(
const FreeModule *F,
const FreeModule *Fsyz,
const gbvector *fcurrent_lead,
const int *exponents, // exponents of fcurrent_lead
gbvector *flead,
gbvectorHeap &f,
gbvectorHeap &fsyz,
const gbvector *g,
const gbvector *gsyz);
void reduce_marked_lead_term_heap(
const FreeModule *F,
const FreeModule *Fsyz,
const gbvector *fcurrent_lead,
const int *exponents, // exponents of fcurrent_lead
gbvector *flead,
gbvectorHeap &f,
gbvectorHeap &fsyz,
const gbvector *marked_in_g,
const gbvector *g,
const gbvector *gsyz);
void gbvector_remove_content(gbvector *f,
gbvector *fsyz,
bool use_denom,
ring_elem &denom);
// if c = content(f,fsyz), then
// f = f//c
// fsyz = fsyz//c
// denom = denom*c
// CAUTION: denom needs to be a valid element of the
// coefficient ring.
// If coeff ring is not ZZ, but is a field, c is chosen so that
// f is monic (if not 0, else fsyz will be monic).
void gbvector_remove_content(gbvector *f, gbvector *fsyz);
// Same as calling gbvector_remove_content with use_denom=false.
void gbvector_auto_reduce(const FreeModule *F,
const FreeModule *Fsyz,
gbvector *&f,
gbvector *&fsyz,
const gbvector *g,
const gbvector *gsyz);
void gbvector_auto_reduce_ZZ(const FreeModule *F,
const FreeModule *Fsyz,
gbvector *&f,
gbvector *&fsyz,
const gbvector *g,
const gbvector *gsyz);
// If g = a*x^A*ei + lower terms
// and if f = ... + b*x^A*ei + ...
// and if v*a + b is the balanced remainder of b by a
// then set f := f + v*g, fsyz := fsyz + v*gsyz
// No content is removed.
void gbvector_text_out(buffer &o,
const FreeModule *F,
const gbvector *f,
int nterms = -1) const;
void gbvector_apply(const FreeModule *F,
const FreeModule *Fsyz,
gbvector *&f,
gbvector *&fsyz,
const gbvector *gsyz,
const gbvector **elems,
const gbvector **elems_syz,
const gbvector **quotients);
// gsyz is allowed to have negative elements. These refer to
// quotient ring elements. In this case, the component that
// is used is the lead component of f. (i.e. this is designed for
// cancelling lead terms).
// [combines: freemod::apply_quotient_ring_elements,
// GBZZ_comp::apply_gb_elements]
};
class GBRingPoly : public GBRing
{
protected:
friend class GBRing;
GBRingPoly(const Ring *K0, const Monoid *M0) : GBRing(K0, M0) {}
public:
virtual gbvector *mult_by_term1(const FreeModule *F,
const gbvector *f,
ring_elem u,
const int *monom,
int comp);
virtual ~GBRingPoly();
};
class GBRingWeyl : public GBRing
{
protected:
friend class GBRing;
GBRingWeyl(const Ring *K0, const Monoid *M0, const WeylAlgebra *R0);
public:
virtual gbvector *mult_by_term1(const FreeModule *F,
const gbvector *f,
ring_elem u,
const int *monom,
int comp);
virtual ~GBRingWeyl();
};
class GBRingWeylZZ : public GBRingWeyl
{
protected:
friend class GBRing;
GBRingWeylZZ(const Ring *K0, const Monoid *M0, const WeylAlgebra *R0);
public:
virtual gbvector *mult_by_term1(const FreeModule *F,
const gbvector *f,
ring_elem u,
const int *monom,
int comp);
virtual ~GBRingWeylZZ();
};
class GBRingSkew : public GBRing
{
protected:
friend class GBRing;
GBRingSkew(const Ring *K0, const Monoid *M0, SkewMultiplication skew0);
public:
virtual gbvector *mult_by_term1(const FreeModule *F,
const gbvector *f,
ring_elem u,
const int *monom,
int comp);
virtual ~GBRingSkew();
};
class GBRingSolvable : public GBRing
{
protected:
friend class GBRing;
GBRingSolvable(const Ring *K0, const Monoid *M0, const SolvableAlgebra *R0);
public:
virtual gbvector *mult_by_term1(const FreeModule *F,
const gbvector *f,
ring_elem u,
const int *monom,
int comp);
virtual ~GBRingSolvable();
};
///////////////////
// Heap routines //
///////////////////
class gbvectorHeap
{
GBRing *GR;
const FreeModule *F;
const Ring *K; // The coefficient ring
gbvector *heap[GEOHEAP_SIZE];
ring_elem heap_coeff[GEOHEAP_SIZE];
int top_of_heap;
int mLead; // set after a call to get_lead_term.
// set negative after each call to add,
// or remove_lead_term
public:
gbvectorHeap(GBRing *GR, const FreeModule *F);
~gbvectorHeap();
GBRing *get_gb_ring() { return GR; }
const FreeModule *get_freemodule() { return F; }
void add(gbvector *p);
void mult_by_coeff(ring_elem a);
const gbvector *get_lead_term(); // Returns NULL if none.
gbvector *remove_lead_term(); // Returns NULL if none.
gbvector *value();
// Returns the linearized value, and resets the gbvectorHeap.
gbvector *debug_list(int i) { return heap[i]; }
// DO NOT USE, except for debugging purposes!
gbvector *current_value() const;
// Adds up all the elements and returns this value
// Mainly used for debugging.
void show() const;
// Displays the current values at each part of the heap
// to stdout
};
template <typename container, typename fcn>
// void displayElements(GBRing* R, const FreeModule* F, iter a, iter b, fcn f)
void displayElements(std::string header, GBRing *R, container a, fcn f)
{
std::cout << header << std::endl;
long count = 0;
// for (auto c = a; c != b; ++c)
for (auto c : a)
{
buffer o;
const gbvector *g = f(c);
o << "[" << count << "] = ";
R->gbvector_text_out(o, nullptr, g, 3);
o << newline;
std::cout << o.str();
++count;
}
}
#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|