1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// Copyright 1996 Michael E. Stillman
// This should probably be done by:
// (a) making a type Ring, that FreeModule, and res_poly
// both can inherit from: but this is a bit of a kludge...
// (b) making a vector type with a next and coeff field, that
// is then inherited by vecterm, resterm.
// Redefine:
// Ring
// routines that should be implemented in this class:
// add_to, compare, get_ring, remove
// Nterm *
// fields of this structure type should include:
// next, coeff
class polyheap
{
const PolynomialRing *F; // Our elements will be vectors in here
const Ring *K; // The coefficient ring
Nterm *heap[GEOHEAP_SIZE];
int top_of_heap;
public:
polyheap(const PolynomialRing *F);
~polyheap();
void add(Nterm *p);
Nterm *remove_lead_term(); // Returns NULL if none.
Nterm *value(); // Returns the linearized value, and resets the polyheap.
Nterm *debug_list(int i)
{
return heap[i];
} // DO NOT USE, except for debugging purposes!
};
inline polyheap::polyheap(const PolynomialRing *FF)
: F(FF), K(FF->getCoefficientRing()), top_of_heap(-1)
{
// set K
int i;
for (i = 0; i < GEOHEAP_SIZE; i++) heap[i] = NULL;
}
inline polyheap::~polyheap()
{
// The user of this class must insure that all 'vecterm's
// have been removed first. Thus, we don't need to
// do anything here.
}
inline void polyheap::add(Nterm *p)
{
int len = F->n_terms(p);
int i = 0;
while (len >= heap_size[i]) i++;
ring_elem tmp1 = heap[i];
ring_elem tmp2 = p;
F->add_to(tmp1, tmp2);
heap[i] = tmp1;
len = F->n_terms(heap[i]);
p = NULL;
while (len >= heap_size[i])
{
i++;
tmp1 = heap[i];
tmp2 = heap[i - 1];
F->add_to(tmp1, tmp2);
heap[i] = tmp1;
len = F->n_terms(heap[i]);
heap[i - 1] = NULL;
}
if (i > top_of_heap) top_of_heap = i;
}
inline Nterm *polyheap::remove_lead_term()
{
int lead_so_far = -1;
for (int i = 0; i <= top_of_heap; i++)
{
if (heap[i] == NULL) continue;
if (lead_so_far < 0)
{
lead_so_far = i;
continue;
}
int cmp = EQ; // F->compare(heap[lead_so_far], heap[i]);
if (cmp == GT) continue;
if (cmp == LT)
{
lead_so_far = i;
continue;
}
// At this point we have equality
K->add_to(heap[lead_so_far]->coeff, heap[i]->coeff);
Nterm *tmp = heap[i];
heap[i] = tmp->next;
tmp->next = NULL;
F->remove(reinterpret_cast<ring_elem &>(tmp));
if (K->is_zero(heap[lead_so_far]->coeff))
{
// Remove, and start over
tmp = heap[lead_so_far];
heap[lead_so_far] = tmp->next;
tmp->next = NULL;
F->remove(reinterpret_cast<ring_elem &>(tmp));
lead_so_far = -1;
i = -1;
}
}
if (lead_so_far < 0) return NULL;
Nterm *result = heap[lead_so_far];
heap[lead_so_far] = result->next;
result->next = NULL;
return result;
}
inline Nterm *polyheap::value()
{
Nterm *result = NULL;
for (int i = 0; i <= top_of_heap; i++)
{
if (heap[i] == NULL) continue;
ring_elem tmp1 = result;
ring_elem tmp2 = heap[i];
F->add_to(tmp1, tmp2);
result = tmp1;
heap[i] = NULL;
}
top_of_heap = -1;
return result;
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|