1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
/* Copyright 2017 Mahrud Sayrafi and Michael E. Stillman
Mahrud Sayrafi's code in this file is in the public domain. */
#include "localring.hpp"
#include "interface/factory.h"
#include "text-io.hpp"
#include "ringmap.hpp"
#include "monoid.hpp"
#include "gbring.hpp"
#include "relem.hpp"
#include "debug.hpp"
#include "matrix.hpp"
#include "matrix-con.hpp"
#include "mutablecomplex.hpp"
#include "exceptions.hpp"
LocalRing *LocalRing::create(const PolyRing *R, GBComputation *P)
{
LocalRing *result = new LocalRing;
result->initialize_local(R, P);
return result;
}
bool LocalRing::initialize_local(const PolyRing *R, GBComputation *P)
{
initialize_ring(
R->characteristic(), R->get_degree_ring(), R->get_heft_vector());
mRing = R;
mPrime = P;
oneV = from_long(1);
zeroV = from_long(0);
minus_oneV = from_long(-1);
/*
if (R->n_quotients() > 0 ||
R->getCoefficients()
->cast_to_LocalRing() // disallowed in x-relem.cpp
||
R->getMonoid()->getNonTermOrderVariables()->len >
0) // disallowed in x-relem.cpp
use_gcd_simplify = false;
else
use_gcd_simplify = true;
*/
return true;
}
local_elem *LocalRing::make_elem(ring_elem a, ring_elem b) const
{
local_elem *result = new_local_elem();
result->numer = a;
result->denom = b;
simplify(result);
return result;
}
local_elem *LocalRing::new_local_elem() const { return newitem(local_elem); }
bool LocalRing::is_in_prime(const ring_elem f) const
{
MatrixConstructor mat(mRing->make_FreeModule(1), 1);
mat.set_entry(0, 0, f);
Matrix *M = mat.to_matrix();
bool res = (mPrime->contains(M) == -1);
delete M;
return res;
}
void LocalRing::simplify(local_elem *f) const
{
ring_elem x, y;
if (use_gcd_simplify)
{
y = f->denom;
if (mRing->is_equal(y, mRing->one())) return;
x = f->numer;
const RingElement *a = RingElement::make_raw(mRing, x);
const RingElement *b = RingElement::make_raw(mRing, y);
const RingElement *c = rawGCDRingElement(a, b, NULL, false);
#if 0
// Debugging code
buffer o;
o << newline;
o << "a = ";
a->text_out(o);
o << " b = ";
b->text_out(o);
o << " gcd = ";
c->text_out(o);
o << newline;
emit(o.str());
#endif
if (!mRing->is_equal(c->get_value(), mRing->one()))
{
f->numer = mRing->divide(f->numer, c->get_value());
f->denom = mRing->divide(f->denom, c->get_value());
}
// Now, let's take the content of the denominator, and divide the
// numerator
// and denominator by this value.
ring_elem ct = mRing->content(
f->denom, f->numer); // result is in mRing->getCoefficients()
#if 0
o.reset();
o << "f->numer = ";
mRing->elem_text_out(o,f->numer);
o << " f->denom = ";
mRing->elem_text_out(o,f->denom);
o << " ass= ";
mRing->getCoefficients()->elem_text_out(o,ct);
o << newline;
emit(o.str());
#endif
if (!mRing->getCoefficients()->is_equal(ct,
mRing->getCoefficients()->one()))
{
f->numer = mRing->divide_by_given_content(f->numer, ct);
f->denom = mRing->divide_by_given_content(f->denom, ct);
}
}
else
{
mRing->syzygy(f->numer, f->denom, x, y);
if (mRing->is_zero(x))
{
mRing->remove(x);
set_non_unit_frac(f->denom);
f->numer = mRing->zero();
f->denom = mRing->one();
return;
}
mRing->negate_to(y);
mRing->remove(f->numer);
mRing->remove(f->denom);
f->numer = y;
f->denom = x;
}
}
ring_elem LocalRing::set_non_unit_frac(ring_elem top) const
{
// Sets the non unit to be top/1 (which flags an error)
// flags an error
// returns 0/1
std::cout << "set_non_unit_frac is called!" << std::endl;
local_elem *f = new_local_elem();
f->numer = top;
f->denom = mRing->one();
set_non_unit(ring_elem(f));
return zero();
}
Ring::CoefficientType LocalRing::coefficient_type() const
{
const PolynomialRing *A = mRing->cast_to_PolynomialRing();
assert(A != 0);
const Ring *K = A->getCoefficientRing();
if (K->coefficient_type() == COEFF_ZZ) return COEFF_QQ;
return K->coefficient_type();
}
// TODO: extend to arbitrary multiplicative sets
bool LocalRing::is_unit(const ring_elem f) const
{
// TODO: make sure f is a local ring element
return (!is_in_prime(f.get_local_elem()->numer));
}
bool LocalRing::is_zero(const ring_elem f) const
{
return (mRing->is_zero(f.get_local_elem()->numer));
}
bool LocalRing::is_equal(const ring_elem a, const ring_elem b) const
{
const local_elem *f = a.get_local_elem();
const local_elem *g = b.get_local_elem();
if (mRing->is_equal(f->denom, g->denom))
{
return mRing->is_equal(f->numer, g->numer);
}
else
{
ring_elem h = subtract(a, b);
bool result = is_zero(h);
remove(h);
return result;
}
}
int LocalRing::compare_elems(const ring_elem a, const ring_elem b) const
{
const local_elem *f = a.get_local_elem();
const local_elem *g = b.get_local_elem();
int cmp = mRing->compare_elems(f->numer, g->numer);
if (cmp != 0) return cmp;
return mRing->compare_elems(f->denom, g->denom);
}
ring_elem LocalRing::numerator(ring_elem f) const
{
const local_elem *g = f.get_local_elem();
return mRing->copy(g->numer);
}
ring_elem LocalRing::denominator(ring_elem f) const
{
const local_elem *g = f.get_local_elem();
return mRing->copy(g->denom);
}
ring_elem LocalRing::fraction(const ring_elem top, const ring_elem bottom) const
{
return ring_elem(make_elem(mRing->copy(top), mRing->copy(bottom)));
}
// TODO: implement for MutableMatrix
void LocalRing::lift_up(const Ring *R, const Matrix *m, Matrix *&result) const
{
const RingElement *a, *b, *d;
MatrixConstructor mat(mRing->make_FreeModule(m->n_rows()), m->n_cols());
Matrix::column_iterator i(m), end(m);
for (int c = 0; c < m->n_cols(); c++)
{
// TODO: make this into a routine for vector LCM
a = RingElement::make_raw(mRing, mRing->from_long(1));
for (i = Matrix::column_iterator(m, c); i != end; ++i)
{
const local_elem * f = ((*i)->coeff).get_local_elem();
b = RingElement::make_raw(mRing, f->denom);
d = rawGCDRingElement(a, b, NULL, false);
#if 0 // FIXME: GCD(8,2)=1 apparently ...
// see https://github.com/Macaulay2/M2/issues/1958
drelem(a);
std::cout<<" ";
drelem(b);
std::cout<<" ";
drelem(d);
std::cout<<std::endl;
#endif
d = *b / *d;
a = *a * *d;
}
for (i = Matrix::column_iterator(m, c); i != end; ++i)
{
const local_elem * f = ((*i)->coeff).get_local_elem();
mat.set_entry(
(*i)->comp,
c,
mRing->mult(f->numer, mRing->divide(a->get_value(), f->denom)));
}
}
mat.compute_column_degrees();
result = mat.to_matrix();
}
bool LocalRing::lift(const Ring *Rg, const ring_elem f, ring_elem &result) const
{
// Rg = R ---> frac R
// f is an element of frac R.
ring_elem
hdenom; // used in the case when the denominator can be a unit, but not 1
// e.g. when this = frac (QQ[x,y,z]). Is an element of
if (Rg == mRing)
{
const local_elem *h = f.get_local_elem();
if (mRing->is_equal(h->denom, mRing->one()))
{
result = mRing->copy(h->numer);
return true;
}
else
{
if (mRing->is_field())
{
// XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
// try to lift denominator. If can, can lift, otherwise not.
if (mRing->lift(mRing, h->denom, hdenom))
{
ring_elem hinv = mRing->invert(hdenom);
result = mRing->mult(hinv, h->numer);
return true;
}
}
}
}
return false;
}
bool LocalRing::promote(const Ring *Rf,
const ring_elem f,
ring_elem &result) const
{
// Rf = R ---> frac R
if (Rf == mRing)
{
local_elem *g = new_local_elem();
g->numer = mRing->copy(f);
g->denom = mRing->from_long(1);
result = ring_elem(g);
return true;
}
return false;
}
bool LocalRing::from_rational(mpq_srcptr n, ring_elem &result) const
{
local_elem *f = new_local_elem();
f->numer = mRing->from_int(mpq_numref(n));
f->denom = mRing->from_int(mpq_denref(n));
bool ok = not mRing->is_zero(f->denom);
if (ok) result = ring_elem(f);
return ok;
}
ring_elem LocalRing::from_long(long n) const
{
local_elem *f = new_local_elem();
f->numer = mRing->from_long(n);
f->denom = mRing->from_long(1);
return ring_elem(f);
}
ring_elem LocalRing::from_int(mpz_srcptr n) const
{
local_elem *f = new_local_elem();
f->numer = mRing->from_int(n);
f->denom = mRing->from_long(1);
return ring_elem(f);
}
ring_elem LocalRing::var(int v) const
{
local_elem *f = new_local_elem();
f->numer = mRing->var(v);
f->denom = mRing->from_long(1);
return ring_elem(f);
}
int LocalRing::index_of_var(const ring_elem a) const
{
const local_elem *f = a.get_local_elem();
if (!mRing->is_unit(f->denom))
// If so, a cannot be a variable, otherwise, by 'simplify', f->denom == 1.
return -1;
return mRing->index_of_var(f->numer);
}
M2_arrayint LocalRing::support(const ring_elem a) const
{
const local_elem *f = a.get_local_elem();
M2_arrayint result1 = mRing->support(f->numer);
M2_arrayint result2 = mRing->support(f->denom);
M2_arrayint result = M2_makearrayint(result1->len + result2->len);
for (int i = 0; i < result1->len; i++) result->array[i] = result1->array[i];
for (int i = 0; i < result2->len; i++)
result->array[result1->len + i] = result2->array[i];
return result;
}
void LocalRing::lower_content(ring_elem &c, const ring_elem g) const
{
if (!use_gcd_simplify) return;
if (is_zero(c))
{
c = g;
return;
}
const local_elem *cf = c.get_local_elem();
const local_elem *gf = g.get_local_elem();
const RingElement *c1 = RingElement::make_raw(mRing, cf->numer);
const RingElement *c2 = RingElement::make_raw(mRing, cf->denom);
const RingElement *g1 = RingElement::make_raw(mRing, gf->numer);
const RingElement *g2 = RingElement::make_raw(mRing, gf->denom);
c1 = rawGCDRingElement(c1, g1, NULL, false);
const RingElement *cc2 = rawGCDRingElement(c2, g2, NULL, false);
const RingElement *cc3 = (*c2) * (*g2);
const RingElement *cc4 = (*cc3) / (*cc2);
local_elem *result = new_local_elem();
result->numer = c1->get_value();
result->denom = cc4->get_value();
c = ring_elem(result);
}
bool LocalRing::is_homogeneous(const ring_elem a) const
{
if (is_zero(a)) return true;
const local_elem *f = a.get_local_elem();
if (!mRing->is_homogeneous(f->numer) || !mRing->is_homogeneous(f->denom))
return false;
return true;
}
void LocalRing::degree(const ring_elem a, int *d) const
{
const local_elem *f = a.get_local_elem();
mRing->degree(f->numer, d);
int *e = degree_monoid()->make_one();
mRing->degree(f->denom, e);
degree_monoid()->divide(d, e, d);
degree_monoid()->remove(e);
}
bool LocalRing::multi_degree(const ring_elem a, int *d) const
{
const local_elem *f = a.get_local_elem();
bool tophom = mRing->multi_degree(f->numer, d);
int *e = degree_monoid()->make_one();
bool bottomhom = mRing->multi_degree(f->denom, e);
degree_monoid()->divide(d, e, d);
degree_monoid()->remove(e);
return tophom && bottomhom;
}
void LocalRing::degree_weights(const ring_elem,
M2_arrayint,
int &lo,
int &hi) const
{
assert(0);
// MES: what should this do?
lo = hi = 0;
}
ring_elem LocalRing::homogenize(const ring_elem a,
int v,
int deg,
M2_arrayint wts) const
{
int d1, d2, lo1, lo2;
ring_elem top, bottom;
const local_elem *f = a.get_local_elem();
mRing->degree_weights(f->numer, wts, lo1, d1);
mRing->degree_weights(f->denom, wts, lo2, d2);
if (deg >= d1 - d2)
{
top = mRing->homogenize(f->numer, v, deg + d2, wts);
bottom = mRing->homogenize(f->denom, v, d2, wts);
}
else
{
top = mRing->homogenize(f->numer, v, d1, wts);
bottom = mRing->homogenize(f->denom, v, -deg + d1, wts);
}
local_elem *result = make_elem(top, bottom);
return ring_elem(result);
}
ring_elem LocalRing::homogenize(const ring_elem a, int v, M2_arrayint wts) const
{
const local_elem *f = a.get_local_elem();
ring_elem top = mRing->homogenize(f->numer, v, wts);
ring_elem bottom = mRing->homogenize(f->denom, v, wts);
local_elem *result = make_elem(top, bottom);
return ring_elem(result);
}
ring_elem LocalRing::copy(const ring_elem a) const
{
const local_elem *f = a.get_local_elem();
local_elem *g = new_local_elem();
g->numer = mRing->copy(f->numer);
g->denom = mRing->copy(f->denom);
return ring_elem(g);
}
void LocalRing::remove(ring_elem &a) const {}
ring_elem LocalRing::negate(const ring_elem a) const
{
const local_elem *f = a.get_local_elem();
local_elem *result = new_local_elem();
result->numer = mRing->negate(f->numer);
result->denom = mRing->copy(f->denom);
return ring_elem(result);
}
ring_elem LocalRing::add(const ring_elem a, const ring_elem b) const
{
const local_elem *f = a.get_local_elem();
const local_elem *g = b.get_local_elem();
ring_elem top, bottom;
if (mRing->is_equal(f->denom, g->denom))
{
top = mRing->add(f->numer, g->numer);
bottom = mRing->copy(f->denom);
}
else
{
top = mRing->mult(f->numer, g->denom);
ring_elem tmp = mRing->mult(f->denom, g->numer);
mRing->add_to(top, tmp);
bottom = mRing->mult(f->denom, g->denom);
if (mRing->is_zero(bottom)) return set_non_unit_frac(f->denom);
}
local_elem *result = make_elem(top, bottom);
return ring_elem(result);
}
ring_elem LocalRing::subtract(const ring_elem a, const ring_elem b) const
{
const local_elem *f = a.get_local_elem();
const local_elem *g = b.get_local_elem();
ring_elem top, bottom;
if (mRing->is_equal(f->denom, g->denom))
{
top = mRing->subtract(f->numer, g->numer);
bottom = mRing->copy(f->denom);
}
else
{
top = mRing->mult(f->numer, g->denom);
ring_elem tmp = mRing->mult(f->denom, g->numer);
mRing->subtract_to(top, tmp);
bottom = mRing->mult(f->denom, g->denom);
if (mRing->is_zero(bottom)) return set_non_unit_frac(f->denom);
}
local_elem *result = make_elem(top, bottom);
return ring_elem(result);
}
ring_elem LocalRing::mult(const ring_elem a, const ring_elem b) const
{
const local_elem *f = a.get_local_elem();
const local_elem *g = b.get_local_elem();
ring_elem top = mRing->mult(f->numer, g->numer);
ring_elem bottom = mRing->mult(f->denom, g->denom);
if (mRing->is_zero(bottom)) return set_non_unit_frac(f->denom);
return ring_elem(make_elem(top, bottom));
}
ring_elem LocalRing::power(const ring_elem a, int n) const
{
const local_elem *f = a.get_local_elem();
ring_elem top, bottom;
if (n >= 0)
{
top = mRing->power(f->numer, n);
bottom = mRing->power(f->denom, n);
if (mRing->is_zero(bottom)) return set_non_unit_frac(f->denom);
}
else
{
if (is_unit(a))
{
top = mRing->power(f->denom, -n);
bottom = mRing->power(f->numer, -n);
}
else
{
throw exc::engine_error("attempt to divide by a non-unit");
}
if (mRing->is_zero(bottom)) return set_non_unit_frac(f->numer);
}
return ring_elem(make_elem(top, bottom));
}
ring_elem LocalRing::power(const ring_elem a, mpz_srcptr n) const
{
const local_elem *f = a.get_local_elem();
ring_elem top, bottom;
if (mpz_sgn(n) >= 0)
{
top = mRing->power(f->numer, n);
bottom = mRing->power(f->denom, n);
if (mRing->is_zero(bottom)) return set_non_unit_frac(f->denom);
}
else
{
mpz_t negative_n;
mpz_init(negative_n);
mpz_neg(negative_n, n);
if (not is_unit(a))
{
throw exc::engine_error("attempt to divide by a non-unit");
}
top = mRing->power(f->denom, negative_n);
bottom = mRing->power(f->numer, negative_n);
mpz_clear(negative_n);
if (mRing->is_zero(bottom)) return set_non_unit_frac(f->numer);
}
return ring_elem(make_elem(top, bottom));
}
ring_elem LocalRing::invert(const ring_elem a) const
{
const local_elem *f = a.get_local_elem();
if (mRing->is_zero(f->numer) || !is_unit(a))
{
throw exc::engine_error("attempt to invert a non-unit");
}
ring_elem top = mRing->copy(f->denom);
ring_elem bottom = mRing->copy(f->numer);
return ring_elem(make_elem(top, bottom));
}
ring_elem LocalRing::divide(const ring_elem a, const ring_elem b) const
{
const local_elem *f = a.get_local_elem();
const local_elem *g = b.get_local_elem();
ring_elem top, bottom;
if (is_unit(b))
{
top = mRing->mult(f->numer, g->denom);
bottom = mRing->mult(f->denom, g->numer);
}
else
{
throw exc::engine_error("attempt to divide by a non-unit");
}
return ring_elem(make_elem(top, bottom));
}
void LocalRing::syzygy(const ring_elem a,
const ring_elem b,
ring_elem &x,
ring_elem &y) const
{
x = LocalRing::from_long(1);
y = LocalRing::divide(a, b);
y = LocalRing::negate(y);
}
ring_elem LocalRing::random() const
{
ring_elem a = mRing->random();
ring_elem b = mRing->random();
if (mRing->is_zero(b))
{
mRing->remove(b);
b = mRing->from_long(1);
}
return ring_elem(make_elem(a, b));
}
ring_elem LocalRing::eval(const RingMap *map,
const ring_elem a,
int first_var) const
{
ring_elem top, bottom, result;
const Ring *S = map->get_ring();
const local_elem *f = a.get_local_elem();
top = mRing->eval(map, f->numer, first_var);
if (S->is_zero(top)) return top;
bottom = mRing->eval(map, f->denom, first_var);
if (S->is_unit(bottom))
result = S->divide(top, bottom);
else
{
throw exc::engine_error("attempt to divide by a non-unit");
}
S->remove(top);
S->remove(bottom);
return result;
}
int LocalRing::n_fraction_vars() const { return mRing->n_vars(); }
int LocalRing::n_terms(const ring_elem a) const
{
return mRing->n_terms(a.get_local_elem()->numer);
}
ring_elem LocalRing::term(const ring_elem a, const int *) const
{
return copy(a);
}
ring_elem LocalRing::lead_coeff(const ring_elem f) const { return f; }
ring_elem LocalRing::get_coeff(const ring_elem f, const int *) const
{
return f;
}
ring_elem LocalRing::get_terms(int nvars0, const ring_elem f, int, int) const
{
return f;
}
void LocalRing::text_out(buffer &o) const
{
o << "LocalRing(";
mRing->text_out(o);
o << ", Prime ideal => ";
mPrime->get_mingens()->text_out(o);
o << ")";
}
void LocalRing::elem_text_out(buffer &o,
const ring_elem a,
bool p_one,
bool p_plus,
bool p_parens) const
{
const local_elem *f = a.get_local_elem();
int denom_one = mRing->is_equal(f->denom, mRing->one());
p_one = p_one || !denom_one;
p_parens = p_parens || !denom_one;
mRing->elem_text_out(o, f->numer, p_one, p_plus, p_parens);
if (!denom_one)
{
o << "/";
p_plus = false;
mRing->elem_text_out(o, f->denom, p_one, p_plus, p_parens);
}
}
unsigned int LocalRing::computeHashValue(const ring_elem f) const
{
const local_elem *g = f.get_local_elem();
return (16473 * mRing->computeHashValue(g->numer) +
7698908 * mRing->computeHashValue(g->denom));
}
/********************************************************************************/
/* Global functions */
/********************************************************************************/
extern "C" { // TODO: remove when this function is in e/interface
Matrix *rawLiftLocalMatrix(const Ring *R, const Matrix *f)
{
const LocalRing *L = f->get_ring()->cast_to_LocalRing();
if (L == 0)
{
ERROR("expected an object over a local ring");
return nullptr;
}
// TODO: Check that f is over a localization of R
if (R != L->get_ring())
{
ERROR("expected an object over a localization of the first argument");
return nullptr;
}
Matrix *result;
L->lift_up(R, f, result);
return result;
}
M2_bool rawIsLocalUnit(const RingElement *f)
{
const LocalRing *L = f->get_ring()->cast_to_LocalRing();
if (L == 0)
{
ERROR("expected an object over a local ring");
return false;
}
return L->is_unit(f->get_value());
}
} // TODO: remove when this function is in e/interface
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|