1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// Copyright 2005 Michael E. Stillman
#include "util.hpp"
#include "dmat.hpp"
#include "smat.hpp"
#include "mat.hpp"
#include "mutablemat.hpp"
#include "coeffrings.hpp"
#include "matrix-con.hpp"
#include "matrix.hpp"
#include "aring-RRR.hpp"
#include "aring-RR.hpp"
#include "aring-CCC.hpp"
#include "aring-zz-gmp.hpp"
#include "aring-zz-flint.hpp"
#include "aring-zzp.hpp"
#include "aring-zzp-ffpack.hpp"
#include "aring-zzp-flint.hpp"
#include "aring-m2-gf.hpp"
#include "aring-gf-givaro.hpp"
#include "aring-glue.hpp"
#include "aring-tower.hpp"
#include "aring-qq.hpp"
#include "lapack.hpp"
#include "mutablemat.hpp"
#include "ZZp.hpp"
MutableMatrix *RingZZ::makeMutableMatrix(size_t nrows,
size_t ncols,
bool dense) const
{
if (dense)
return new MutableMat<DMat<M2::ARingZZGMP> >(
this, get_ARing(), nrows, ncols);
else
return new MutableMat<SMat<M2::ARingZZGMP> >(
this, get_ARing(), nrows, ncols);
}
MutableMatrix *Z_mod::makeMutableMatrix(size_t nrows,
size_t ncols,
bool dense) const
{
if (dense)
return new MutableMat<DMat<M2::ARingZZp> >(this, get_ARing(), nrows, ncols);
else
return new MutableMat<SMat<M2::ARingZZp> >(this, get_ARing(), nrows, ncols);
}
MutableMatrix *MutableMatrix::zero_matrix(const Ring *R,
size_t nrows,
size_t ncols,
bool dense)
{
MutableMatrix *result = R->makeMutableMatrix(nrows, ncols, dense);
if (result != 0) return result;
// In this case, we just use ring elem arithmetic
const CoefficientRingR *cR = R->getCoefficientRingR();
if (dense)
return new MutableMat<DMat<CoefficientRingR> >(R, cR, nrows, ncols);
else
return new MutableMat<SMat<CoefficientRingR> >(R, cR, nrows, ncols);
}
MutableMatrix *MutableMatrix::identity(const Ring *R, size_t nrows, bool dense)
{
MutableMatrix *result = MutableMatrix::zero_matrix(R, nrows, nrows, dense);
for (size_t i = 0; i < nrows; i++) result->set_entry(i, i, R->from_long(1));
return result;
}
MutableMatrix *MutableMatrix::from_matrix(const Matrix *m, bool prefer_dense)
{
MutableMatrix *result =
zero_matrix(m->get_ring(), m->n_rows(), m->n_cols(), prefer_dense);
Matrix::iterator i(m);
for (unsigned int c = 0; c < m->n_cols(); c++)
{
for (i.set(c); i.valid(); i.next())
result->set_entry(i.row(), c, i.entry());
}
return result;
}
void MutableMatrix::text_out(buffer &o) const
{
const Ring *R = get_ring();
size_t nrows = n_rows();
size_t ncols = n_cols();
buffer *p = new buffer[nrows];
size_t r;
for (size_t c = 0; c < ncols; c++)
{
size_t maxcount = 0;
for (r = 0; r < nrows; r++)
{
ring_elem f;
get_entry(r, c, f);
if (!R->is_zero(f))
R->elem_text_out(p[r], f);
else
p[r] << ".";
if (p[r].size() > maxcount) maxcount = p[r].size();
}
for (r = 0; r < nrows; r++)
for (size_t k = maxcount + 1 - p[r].size(); k > 0; k--) p[r] << ' ';
}
for (r = 0; r < nrows; r++)
{
p[r] << '\0';
char *s = p[r].str();
o << s << newline;
}
delete[] p;
}
bool MutableMatrix::set_values(M2_arrayint rows,
M2_arrayint cols,
engine_RawRingElementArray values)
{
if (rows->len != cols->len || rows->len != values->len) return false;
for (size_t i = 0; i < rows->len; i++)
{
if (!set_entry(
rows->array[i], cols->array[i], values->array[i]->get_value()))
return false;
}
return true;
}
#if 0
engine_RawArrayIntPairOrNull rawLQUPFactorizationInPlace(MutableMatrix *A, M2_bool transpose)
{
// Suppose A is m x n
// then we get A = LQUP = LSP, see e.g. http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-28.pdf
// P and Q are permutation info using LAPACK's convention:, see
// http://www.netlib.org/lapack/explore-html/d0/d39/_v_a_r_i_a_n_t_s_2lu_2_r_e_c_2dgetrf_8f.html
// P is n element permutation on column: size(P)=min(m,n);
// for 1 <= i <= min(m,n), col i of the matrix was interchanged with col P(i).
// Qt is m element permutation on rows (inverse permutation)
// for 1 <= i <= min(m,n), col i of the matrix was interchanged with col P(i).
A->transpose();
DMat<M2::ARingZZpFFPACK> *mat = A->coerce< DMat<M2::ARingZZpFFPACK> >();
if (mat == 0)
{
throw exc::engine_error("LUDivine not defined for this ring");
// ERROR("LUDivine not defined for this ring");
// return 0;
}
size_t nelems = mat->numColumns();
if (mat->numRows() < mat->numColumns()) nelems = mat->numRows();
std::vector<size_t> P(nelems, -1);
std::vector<size_t> Qt(nelems, -1);
// ignore return value (rank) of:
LUdivine(mat->ring().field(),
FFLAS::FflasNonUnit,
(transpose ? FFLAS::FflasTrans : FFLAS::FflasNoTrans),
mat->numRows(),
mat->numColumns(),
mat->array(),
mat->numColumns(),
&P[0],
&Qt[0]);
engine_RawArrayIntPairOrNull result = new engine_RawArrayIntPair_struct;
result->a = stdvector_to_M2_arrayint(Qt);
result->b = stdvector_to_M2_arrayint(P);
return result;
}
#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|