1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
// Copyright 1995 Michael E. Stillman
#ifndef _matrix_hh_
#define _matrix_hh_
#include "monoid.hpp"
#include "freemod.hpp"
#include "monideal.hpp"
#include <vector>
class MatrixConstructor;
/**
* \ingroup matrices
*/
class Matrix : public EngineObject
{
FreeModule * mTarget; // _rows;
FreeModule * mSource; // _cols;
int * mDegreeShift; // _degree_shift; // An element of the degree monoid
VECTOR(vec) mEntries; // array<vec> _entries;
friend class FreeModule;
private:
friend class MatrixConstructor;
Matrix(const FreeModule *rows,
const FreeModule *cols,
const int *degree_shift,
VECTOR(vec) & entries);
static bool make_sparse_vecs(MatrixConstructor &mat,
const FreeModule *target,
int ncols,
M2_arrayint rows,
M2_arrayint cols,
const engine_RawRingElementArray entries);
// returns false if an error, true otherwise.
// Places the elements into 'mat'.
// These two routines are private to 'coeffs'
vec strip_vector(vec &f,
const int *vars,
const FreeModule *F,
vec &vmonom) const;
int moneq(const int *exp, int *m, const int *vars, int *exp2) const;
protected:
virtual unsigned int computeHashValue() const;
public:
static const Matrix /* or null */ *make(const FreeModule *target,
int ncols,
const engine_RawRingElementArray M);
static const Matrix /* or null */ *make(const FreeModule *target,
const FreeModule *source,
M2_arrayint deg,
const engine_RawRingElementArray M);
static const Matrix /* or null */ *make_sparse(
const FreeModule *target,
int ncols,
M2_arrayint rows,
M2_arrayint cols,
const engine_RawRingElementArray entries);
static const Matrix /* or null */ *make_sparse(
const FreeModule *target,
const FreeModule *source,
M2_arrayint deg,
M2_arrayint rows,
M2_arrayint cols,
const engine_RawRingElementArray entries);
const Matrix /* or null */ *remake(const FreeModule *target,
const FreeModule *source,
M2_arrayint deg) const;
const Matrix /* or null */ *remake(const FreeModule *target) const;
static const Matrix *make(const MonomialIdeal *mi);
const Ring *get_ring() const { return rows()->get_ring(); }
const Monoid *degree_monoid() const { return get_ring()->degree_monoid(); }
/* The following 5 routines will go away, or change name */
vec &operator[](int i) { return mEntries[i]; }
const vec &operator[](int i) const { return mEntries[i]; }
ring_elem elem(int i, int j) const;
vec &elem(int i) { return mEntries[i]; }
const vec &elem(int i) const { return mEntries[i]; }
/*****************************************/
/* The non-const versions of these will go away */
const FreeModule *rows() const { return mTarget; }
const FreeModule *cols() const { return mSource; }
int n_rows() const { return rows()->rank(); }
int n_cols() const { return cols()->rank(); }
// The degree shift
const int *degree_shift() const { return mDegreeShift; }
// to/from monideals
MonomialIdeal *make_monideal(
int n,
bool use_only_monomials_with_unit_coeffs = false) const;
// matrices over RRR, CCC
Matrix /* or null */ *clean(gmp_RR epsilon) const;
gmp_RRorNull norm(gmp_RR p) const;
// Matrix operations
Matrix /* or null */ *sub_matrix(M2_arrayint r, M2_arrayint c) const;
Matrix /* or null */ *sub_matrix(M2_arrayint c) const;
Matrix *transpose() const;
Matrix *operator+(const Matrix &m) const;
Matrix *operator-() const;
Matrix *operator-(const Matrix &m) const;
Matrix *scalar_mult(const ring_elem r, bool opposite_mult) const;
Matrix *mult(const Matrix *m, bool opposite_mult) const;
Matrix *concat(const Matrix &m) const;
static Matrix *identity(const FreeModule *F);
static Matrix /* or null */ *zero(const FreeModule *F, const FreeModule *G);
Matrix /* or null */ *koszul(int p) const;
static Matrix /* or null */ *koszul(const Matrix *rows, const Matrix *cols);
static Matrix /* or null */ *koszul_monomials(int nskew,
const Matrix *rows,
const Matrix *cols);
Matrix /* or null */ *reshape(const FreeModule *G, const FreeModule *H) const;
static Matrix /* or null */ *flip(const FreeModule *G, const FreeModule *H);
Matrix /* or null */ *direct_sum(const Matrix *m) const;
Matrix /* or null */ *module_tensor(const Matrix *m) const;
Matrix /* or null */ *tensor(const Matrix *m) const;
Matrix /* or null */ *diff(const Matrix *m, int use_coef) const;
Matrix /* or null */ *symm(int n) const; // in symm.cpp
Matrix /* or null */ *coeffs(const int *vars, Matrix *&result_monoms) const;
Matrix /* or null */ *coeffs(M2_arrayint vars, const Matrix *monoms) const;
Matrix /* or null */ *monomials(M2_arrayint vars) const;
M2_arrayintOrNull support() const;
// gives error if not a polynomial ring, other wise the array of indices
// appearing in this.
Matrix *top_coefficients(Matrix *&monoms) const;
const Matrix /* or null */ *basis(M2_arrayint lo_degree,
M2_arrayint hi_degree,
M2_arrayint wt,
M2_arrayint vars,
bool do_truncation,
int limit) const;
Matrix *exterior(int p, int strategy) const;
Matrix *minors(int p, int strategy) const;
Matrix /* or null */ *minors(int p,
int strategy,
int n_to_compute, // -1 means all
M2_arrayintOrNull first_row, // possibly NULL
M2_arrayintOrNull first_col // possibly NULL
) const;
Matrix *pfaffians(int p) const; // in pfaff.cpp
static Matrix *wedge_product(int p, int q, const FreeModule *F);
// static Matrix wedge_dual(int p, const FreeModule *F);
// equality, zero
bool is_equal(const Matrix &m) const;
bool is_zero() const;
// degrees
bool is_homogeneous() const;
Matrix *homogenize(int v, M2_arrayint wts) const;
// Simplification of column set
Matrix *simplify(int n) const;
Matrix *auto_reduce()
const; // An error is given, if there are two lead terms
// one which divides another.
// Sorting the columns of the matrix (new positions into 'result')
// void sort(int degorder, int monorder, intarray &result) const;
M2_arrayint sort(int degorder, int monorder) const;
// Matrix selection
Matrix *lead_term(int n = -1) const; // Select those monomials in each column
// which are maximal in the order under
// the first n weight vectors
// If n is -1, then the flat lead terms are returned,
// If n is > 0, then the first n parts of the monomial order are used.
// HOWEVER: in this case, the Schreyer order is not used: the usual order
// of the ring (for free modules) is used.
// Module operations
int dimension1() const; // Compute the dimension of the quotient of the
// submodule generated by the lead terms of the
// columns of the matrix, modulo any lead terms of the
// presentation ideal of the ring of m.
// Over ZZ, this gives the dimension over QQ.
// See engine.h for the definition of 'content' here
const Matrix /* or null */ *content() const;
const Matrix /* or null */ *remove_content() const;
const Matrix /* or null */ *split_off_content(
const Matrix /* or null */ *&result) const;
private:
void minimal_lead_terms_ZZ(intarray &result) const;
public:
void minimal_lead_terms(intarray &result) const;
M2_arrayint elim_vars(int nparts) const;
M2_arrayint elim_keep(int nparts) const;
Matrix *divide_by_var(int n, int maxd, int &maxdivided)
const; // maxd<0 means divide by as much as possible
Matrix *compress() const; // Remove zero columns
Matrix *remove_monomial_factors(bool make_squarefree_only) const;
Matrix *remove_scalar_multiples() const;
static Matrix *random(const Ring *R, int r, int c);
static Matrix *random(
const Ring *R,
int r,
int c,
double fraction_non_zero,
int special_type); // 0: general, 1:upper triangular, others?
void text_out(buffer &o) const;
class iterator : public our_new_delete
{
const Matrix *M; // all matrices are immutable
int col;
vec v;
public:
// iterator(const Matrix *M0, int col0=0) : M(M0), col(col0),
// v(M0->elem(col0)) {}
iterator(const Matrix *M0) : M(M0), col(-1), v(0) {}
void set(int newcol)
{
col = newcol;
v = M->elem(col);
}
void next() { v = v->next; }
bool valid() { return v != 0; }
int row() { return v->comp; }
ring_elem entry() { return v->coeff; }
};
class column_iterator
{
const vecterm * v;
public:
column_iterator(const Matrix *M, int c) : v(M->elem(c)) {}
column_iterator(const Matrix *M) : v(nullptr) {}
column_iterator& operator++() { v = v->next; return *this; }
const vecterm* operator *() { return v; }
bool operator!=(const column_iterator b) { return v != b.v; }
};
};
#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|