File: monideal.hpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (230 lines) | stat: -rw-r--r-- 6,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// (c) 1994  Michael E. Stillman
#ifndef _monideal_hh_
#define _monideal_hh_

#include "queue.hpp"
#include "index.hpp"
#include "varpower.hpp"
#include "int-bag.hpp"
#include "ring.hpp"
#include "polyring.hpp"

class MinimalPrimes;

class Nmi_node : public our_new_delete  // monomial ideal internal node ///
{
  friend class MonomialIdeal;
  friend class AssociatedPrimes;
  friend class MinimalPrimes;

 protected:
  int var;
  int exp;
  Nmi_node *left;
  Nmi_node *right;
  Nmi_node *header;
  enum { node, leaf } tag;
  union
  {
    Nmi_node *down;  // 'up' node, if this is a head of a list
    Bag *bag;
  } val;

  //  Nmi_node(int v, int e, Nmi_node *d)
  //    : var(v), exp(e), left(NULL), right(NULL), header(NULL), tag(node)
  //  { val.down = d; }
  //
  //  Nmi_node(int v, int e, Bag *b)
  //    : var(v), exp(e), left(NULL), right(NULL), header(NULL), tag(leaf)
  //  { val.bag = b; }
  //
  //  ~Nmi_node();

  Nmi_node *&down() { return val.down; }
  Bag *&baggage() { return val.bag; }
  intarray &monom() { return val.bag->monom(); }              // varpower
  const intarray &monom() const { return val.bag->monom(); }  // varpower
  void insert_to_left(Nmi_node *q)
  {
    q->header = header;
    q->left = left;
    q->right = this;
    left = left->right = q;
  }
};

class MonomialIdeal : public EngineObject
// these objects are immutable once they are sent to the front end (i.e.
// once their hash code has been set...
{
  const PolynomialRing *R;
  Nmi_node *mi;
  int count;  // We hack this a bit: the low order bit (count%1==1) means that
              // we own the stash
              // count//2 is the actual number of nodes here.
  stash *mi_stash;
  friend class AssociatedPrimes;
  friend class MinimalPrimes;

 private:
  Nmi_node *new_mi_node(int v, int e, Nmi_node *d);
  Nmi_node *new_mi_node(int v, int e, Bag *b);
  void delete_mi_node(Nmi_node *p);

  Nmi_node *first_node() const;
  Nmi_node *last_node() const;
  Nmi_node *next(Nmi_node *p) const;
  Nmi_node *prev(Nmi_node *p) const;

  void insert1(Nmi_node *&p, Bag *b);
  void remove1(Nmi_node *p);
  void do_node(Nmi_node *p, int indent, int disp) const;
  void do_tree(Nmi_node *p, int depth, int indent, int disp) const;
  int debug_check(Nmi_node *p, const Nmi_node *up) const;

 protected:
  virtual unsigned int computeHashValue() const;

 public:
  MonomialIdeal(const PolynomialRing *RR, stash *mi_stash = 0);
  virtual ~MonomialIdeal() { remove_MonomialIdeal(); }
  int length_of() const { return count / 2; }
  MonomialIdeal(const PolynomialRing *R,
                queue<Bag *> &elems,
                stash *mi_stash = 0);
  MonomialIdeal(const PolynomialRing *R,
                queue<Bag *> &elems,
                queue<Bag *> &rejects,
                stash *mi_stash = 0);

  MonomialIdeal *copy() const;

  void remove_MonomialIdeal();     // frees all of the internal things
  const int *first_elem() const;   // returns varpower
  const int *second_elem() const;  // returns varpower

  // Informational
  int length() const { return count / 2; }
  int topvar() const { return (mi == NULL ? -1 : mi->var); }
  void text_out(buffer &o) const;

  const PolynomialRing *get_ring() const { return R; }
  const Monoid *degree_monoid() const
  {
    const Ring *S = R;
    return S->degree_monoid();
  }

  // Insertion of new monomials.
  void insert_minimal(Bag *b);
  // Insert baggage 'b'.  It is assumed
  // that 'b' is not already in the monomial ideal.

  int insert(Bag *b);

  void insert_w_deletions(Bag *b, queue<Bag *> &deletions);
  // Insert 'm', removing any monomials divisible by 'm', and
  // returning their baggage in a list of moninfo *'s.

  int remove(Bag *&b);
  // Deletion.  Remove the lexicographically largest element, placing
  // it into b.  Return 1 if an element is removed.

  int search_expvector(const int *m, Bag *&b) const;
  // Search.  Return whether a monomial which divides 'm' is
  // found.  If so, return the baggage.  'm' is assumed to be an
  // exponent vector of length larger than the top variable occurring
  // in 'this'
  int search(const int *m, Bag *&b) const;
  // Search.  Return whether a monomial which divides 'm' is
  // found.  If so, return the baggage.  'm' is a varpower monomial.
  void find_all_divisors(const int *exp, VECTOR(Bag *)& b) const;
  // Search. Return a list of all elements which divide 'exp'.

  Bag *operator[](Index<MonomialIdeal> i) const;
  Index<MonomialIdeal> first() const;
  Index<MonomialIdeal> last() const;

  void *next(void *p) const;
  void *prev(void *p) const;
  int valid(void *p) const { return (p != NULL); }
  void debug_out(int disp = 1) const;
  void debug_check() const;

  bool is_equal(const MonomialIdeal &mi) const;

  MonomialIdeal *intersect(const int *m) const;  // m is a varpower monomial
  MonomialIdeal *intersect(const MonomialIdeal &J) const;
  MonomialIdeal *quotient(const int *m) const;  // m is a varpower monomial
  MonomialIdeal *quotient(const MonomialIdeal &J) const;
  MonomialIdeal *erase(const int *m) const;  // m is a varpower monomial
  MonomialIdeal *sat(const MonomialIdeal &J) const;

  M2_arrayint lcm() const;
  // Returns the lcm of all of the generators of this, as an array of ints

  MonomialIdeal *alexander_dual(const M2_arrayint a) const;
  // a is a vector which is entrywise >= lcm(this).

  MonomialIdeal *radical() const;

  MonomialIdeal *borel() const;
  bool is_borel() const;

  MonomialIdeal *operator+(const MonomialIdeal &F) const;
  MonomialIdeal *operator-(const MonomialIdeal &F) const;
  MonomialIdeal *operator*(const MonomialIdeal &G) const;

  bool is_one() const;
  int n_pure_powers() const;
};

struct monideal_pair : public our_new_delete
{
  MonomialIdeal *mi;
  MonomialIdeal *mi_search;

  monideal_pair(const PolynomialRing *R)
      : mi(new MonomialIdeal(R)), mi_search(new MonomialIdeal(R))
  {
  }

  monideal_pair(const PolynomialRing *R, stash *mi_stash)
      : mi(new MonomialIdeal(R, mi_stash)),
        mi_search(new MonomialIdeal(R, mi_stash))
  {
  }
};

//-----------------------------------------------------------------

inline void MonomialIdeal::insert_minimal(Bag *b)
{
  insert1(mi, b);
  count += 2;
}

inline Bag *MonomialIdeal::operator[](Index<MonomialIdeal> i) const
{
  Nmi_node *p = reinterpret_cast<Nmi_node *>(i.val());
  return p->baggage();
}

inline Nmi_node *MonomialIdeal::first_node() const { return next(mi); }
inline Nmi_node *MonomialIdeal::last_node() const { return prev(mi); }
inline Index<MonomialIdeal> MonomialIdeal::first() const
{
  return Index<MonomialIdeal>(next(reinterpret_cast<void *>(mi)), this);
}

inline Index<MonomialIdeal> MonomialIdeal::last() const
{
  return Index<MonomialIdeal>(prev(reinterpret_cast<void *>(mi)), this);
}

#endif

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: