File: monoid.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (744 lines) | stat: -rw-r--r-- 18,937 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
// Copyright 1996 Michael E. Stillman

#include <ctype.h>
#include "util.hpp"
#include "text-io.hpp"
#include "monoid.hpp"

#include <assert.h>
#include <string.h>

#include "buffer.hpp"
#include "error.h"
#include "exceptions.hpp"
#include "interface/monomial-ordering.h"
#include "ntuple.hpp"
#include "overflow.hpp"
#include "polyring.hpp"
#include "varpower.hpp"

Monoid *Monoid::trivial_monoid = 0;

// ONLY to be called by PolyRing::get_trivial_poly_ring()
void Monoid::set_trivial_monoid_degree_ring(const PolynomialRing *DR)
{
  Monoid *M = get_trivial_monoid();
  M->degree_ring_ = DR;
  M->degree_monoid_ = M;
}

Monoid::Monoid()
    : nvars_(0),
      varnames_(nullptr),
      degvals_(nullptr),
      heftvals_(nullptr),
      heft_degree_of_var_(nullptr),
      degree_ring_(nullptr),    // will be set later
      degree_monoid_(nullptr),  // will be set later
      mo_(nullptr),
      monorder_(nullptr),
      overflow(0),
      exp_size(0),
      monomial_size_(0),
      monomial_bound_(0),
      n_invertible_vars_(0),
      n_before_component_(0),
      n_after_component_(0),
      component_up_(true),
      local_vars(nullptr),
      first_weights_slot_(-1)
{
}

Monoid::~Monoid() {}
Monoid *Monoid::get_trivial_monoid()
{
  if (trivial_monoid == 0) trivial_monoid = new Monoid;

  return trivial_monoid;
}

Monoid *Monoid::create(const MonomialOrdering *mo,
                       M2_ArrayString names,
                       const PolynomialRing *deg_ring,
                       M2_arrayint degs,
                       M2_arrayint hefts)
{
  unsigned int nvars = rawNumberOfVariables(mo);
  ;
  unsigned int eachdeg = deg_ring->n_vars();
  if (degs->len != nvars * eachdeg)
    {
      ERROR("degree list should be of length %d", nvars * eachdeg);
      return 0;
    }
  if (nvars != names->len)
    {
      ERROR("expected %d variable names", nvars);
      return 0;
    }

  return new Monoid(mo, names, deg_ring, degs, hefts);
}

Monoid *Monoid::create(const MonomialOrdering *mo,
                        const std::vector<std::string>& names,
                        const PolynomialRing *DR, /* degree ring */
                        const std::vector<int>& degs,
                        const std::vector<int>& hefts)
{
  
  return create(mo,
                toM2ArrayString(names),
                DR,
                stdvector_to_M2_arrayint(degs),
                stdvector_to_M2_arrayint(hefts));
}

Monoid::Monoid(const MonomialOrdering *mo,
               M2_ArrayString names,
               const PolynomialRing *deg_ring,
               M2_arrayint degs,
               M2_arrayint hefts)
    : nvars_(rawNumberOfVariables(mo)),
      varnames_(names),
      degvals_(degs),
      heftvals_(hefts),
      heft_degree_of_var_(nullptr), // set below, except in the trivial case.
      degree_ring_(deg_ring),
      degree_monoid_(deg_ring->getMonoid()),
      mo_(mo),
      monorder_(nullptr), // set below
      overflow(0),
      exp_size(0), // set below
      monomial_size_(0), // set below
      monomial_bound_(0),
      n_invertible_vars_(0), // set below
      n_before_component_(0), // set below
      n_after_component_(0), // set below
      component_up_(true), // set below
      local_vars(nullptr), // set below
      first_weights_slot_(-1) // set below
      // nslots: set below
{
  monorder_ = monomialOrderMake(mo);

  monomial_size_ = monorder_->nslots;
  n_before_component_ = monorder_->nslots_before_component;
  n_after_component_ = monomial_size_ - n_before_component_;
  component_up_ = monorder_->component_up;

  // Set nslots_
  int total = 0;
  for (int i = 0; i < monorder_->nblocks; i++)
    {
      total += monorder_->blocks[i].nslots;
      nslots_.push_back(total);
    }

  // Set first_weight_value_
  bool get_out = false;
  first_weights_slot_ = -1;
  for (int i = 0; i < monorder_->nblocks && !get_out; i++)
    {
      switch (monorder_->blocks[i].typ)
        {
          case MO_LEX:
          case MO_LEX2:
          case MO_LEX4:
          case MO_NC_LEX:
            get_out = true;
            break;
          case MO_REVLEX:
          case MO_LAURENT:
          case MO_LAURENT_REVLEX:
          case MO_GREVLEX:
          case MO_GREVLEX2:
          case MO_GREVLEX4:
          case MO_GREVLEX_WTS:
          case MO_GREVLEX2_WTS:
          case MO_GREVLEX4_WTS:
          case MO_WEIGHTS:
            first_weights_slot_ = 0;
          case MO_POSITION_UP:
            continue;
          case MO_POSITION_DOWN:
            continue;
          default:
            INTERNAL_ERROR("monomial order block type not handled");
        }
    }
  exp_size = EXPONENT_BYTE_SIZE(nvars_);

  n_invertible_vars_ = rawNumberOfInvertibleVariables(mo_);

  set_degrees();
  set_overflow_flags();

  local_vars = rawNonTermOrderVariables(mo);

  for (int i=0; i<n_vars(); ++i)
    {
      bool isLaurent = isLaurentVariable(i);
      mLaurentVariablesPredicate.push_back(isLaurent);
    }

  // Debugging only:
  //  fprintf(stderr, "%d variables < 1\n", local_vars->len);
  //  if (local_vars->len > 0)
  //    {
  //      fprintf(stderr, "they are: ");
  //      for (int i=0; i<local_vars->len; i++)
  //      fprintf(stderr, "%d ", local_vars->array[i]);
  //      fprintf(stderr, "\n");
  //    }
}

void Monoid::set_degrees()
{
  if (degree_monoid_ == NULL)
    {
      degree_of_var_.push_back(static_cast<const_monomial>(NULL));
      return;
    }

  // Set 'degree_of_var
  int degvars = degree_monoid_->n_vars();
  int *t = degvals_->array;

  heft_degree_of_var_ = M2_makearrayint(nvars_);
  if (heftvals_->len != degvars)
    {
      ERROR("internal error: heftvals_->len == %d != degvars == %d",
            heftvals_->len,
            degvars);
      return;
    }
  if (degvars > 0)
    for (int i = 0; i < nvars_; i++)
      {
        monomial m = degree_monoid_->make_one();
        degree_monoid_->from_expvector(t, m);
        degree_of_var_.push_back(m);
        heft_degree_of_var_->array[i] = ntuple::weight(degvars, t, heftvals_);
        t += degvars;
      }
  else
    {
      for (int i = 0; i < nvars_; i++)
        {
          monomial m = degree_monoid_->make_one();
          degree_monoid_->from_expvector(t, m);
          degree_of_var_.push_back(m);
          heft_degree_of_var_->array[i] = 1;
        }
    }
  degree_of_var_.push_back(degree_monoid_->make_one());
}

std::vector<int> Monoid::getFirstWeightVector() const
{
  std::vector<int> result;

  // grab the first weight vector
  if (getMonomialOrdering()->len > 0 and
      getMonomialOrdering()->array[0]->type == MO_WEIGHTS)
    {
      int i;
      result.reserve(n_vars());
      const int *wts = getMonomialOrdering()->array[0]->wts;
      for (i = 0; i < getMonomialOrdering()->array[0]->nvars; i++)
        result.push_back(wts[i]);
      for (; i < n_vars(); i++) result.push_back(0);
    }
  return result;
}

std::vector<int> Monoid::getPrimaryDegreeVector() const
{
  std::vector<int> result;

  M2_arrayint degs = primary_degree_of_vars();

  for (int i = 0; i < degs->len; i++) result.push_back(degs->array[i]);

  return result;
}

void Monoid::set_overflow_flags()
{
  overflow = newarray_atomic(enum overflow_type, monomial_size_);
  enum overflow_type flag;
  int i = 0, k = 0;
  for (; i < monorder_->nblocks; i++)
    {
      mo_block *b = &monorder_->blocks[i];
      switch (monorder_->blocks[i].typ)
        {
          case MO_REVLEX:
          case MO_WEIGHTS:
          case MO_LAURENT:
          case MO_LAURENT_REVLEX:
          case MO_NC_LEX:
            flag = OVER;
            goto fillin;
          case MO_POSITION_UP:
          case MO_POSITION_DOWN:
            ERROR(
                "internal error - MO_POSITION_DOWN or MO_POSITION_UP "
                "encountered");
            assert(0);
            break;
          case MO_LEX:
          case MO_GREVLEX:
          case MO_GREVLEX_WTS:
            flag = OVER1;
            goto fillin;
          case MO_LEX2:
          case MO_GREVLEX2:
          case MO_GREVLEX2_WTS:
            flag = OVER2;
            goto fillin;
          case MO_LEX4:
          case MO_GREVLEX4:
          case MO_GREVLEX4_WTS:
            flag = OVER4;
            goto fillin;
          fillin:
            assert(b->first_slot == k);
            for (int p = b->nslots; p > 0; p--)
              {
                assert(k < monomial_size_);
                overflow[k++] = flag;
              }
            break;
          default:
            ERROR("internal error - missing case");
            assert(0);
            break;
        }
    }
  assert(k == monomial_size_);
}

bool Monoid::primary_degrees_of_vars_positive() const
{
  for (int i = 0; i < nvars_; i++)
    if (primary_degree_of_var(i) <= 0) return false;
  return true;
}

void Monoid::text_out(buffer &o) const
{
  int i;
  o << "[";
  for (i = 0; i < nvars_ - 1; i++) o << varnames_->array[i] << ",";
  if (nvars_ > 0) o << varnames_->array[nvars_ - 1];

  int ndegrees = degree_monoid()->n_vars();
  o << "," << newline << "  DegreeLength => " << ndegrees;

  o << "," << newline << "  Degrees => {";
  for (i = 0; i < nvars_; i++)
    {
      if (i != 0) o << ", ";
      if (ndegrees != 1) o << '{';
      for (int j = 0; j < ndegrees; j++)
        {
          if (j != 0) o << ", ";
          o << degvals_->array[i * ndegrees + j];
        }
      if (ndegrees != 1) o << '}';
    }
  o << "}";

  if (heftvals_ != NULL)
    {
      o << "," << newline << "  Heft => {";
      for (i = 0; i < heftvals_->len; i++)
        {
          if (i != 0) o << ", ";
          o << heftvals_->array[i];
        }
      o << "}";
    }

  if (mo_ != 0)
    {
      o << "," << newline << "  ";
      o << IM2_MonomialOrdering_to_string(mo_);
    }

  o << newline << "  ]";
}

unsigned int Monoid::computeHashValue(const_monomial m) const
{
  unsigned int seed = 0x3124252;
  unsigned int hash = 0x43435728;
  int len = monomial_size();
  for (int i = 0; i < len; i++)
    {
      unsigned int val = *m++;
      hash += seed * val;
      seed = seed + 1342234;
    }
  return hash;
}

void Monoid::from_expvector(const_exponents exp, monomial result) const
{
  monomialOrderEncodeFromActualExponents(monorder_, exp, result);
}

M2_arrayint Monoid::to_arrayint(const_monomial monom) const
{
  M2_arrayint result = M2_makearrayint(n_vars());
  to_expvector(monom, result->array);
  return result;
}

void Monoid::to_expvector(const_monomial m, exponents result_exp) const
{
  monomialOrderDecodeToActualExponents(monorder_, m, result_exp);
}

void Monoid::mult(const_monomial m, const_monomial n, monomial result) const
{
  overflow_type *t = overflow;
  for (int i = monomial_size_; i != 0; i--) switch (*t++)
      {
        case OVER:
          *result++ = safe::add(*m++, *n++);
          break;
        case OVER1:
          *result++ = safe::pos_add(*m++, *n++);
          break;
        case OVER2:
          *result++ = safe::pos_add_2(*m++, *n++);
          break;
        case OVER4:
          *result++ = safe::pos_add_4(*m++, *n++);
          break;
        default:
          throw(exc::internal_error("missing case"));
      }
}

int Monoid::num_parts() const { return monorder_->nblocks; }
int Monoid::n_slots(int nparts) const
{
  if (nparts == 0 or num_parts() == 0) return 0;
  nparts--;
  if (nparts < 0) return monomial_size();
  if (nparts >= num_parts()) nparts = num_parts() - 1;
  return nslots_[nparts];
}

bool Monoid::in_subring(int nslots, const_monomial m) const
{
  for (int i = 0; i < nslots; i++)
    if (*m++) return false;
  return true;
}

int Monoid::partial_compare(int num, const_exponents m, const_monomial n0) const
{
  if (num == 0) return EQ;
  int n[this->nvars_];
  to_expvector(n0, n);
  for (int i = 0; i < num; i++)
    if (m[i] != n[i]) return m[i] < n[i] ? LT : GT;
  return EQ;
}

int Monoid::compare(const_monomial m,
                    int mcomp,
                    const_monomial n,
                    int ncomp) const
{
  int i = n_before_component_;
  while (1)
    {
      if (i == 0) break;
      if (*m > *n) return GT;
      if (*m < *n) return LT;
      m++, n++;
      --i;
    }
  if (component_up_)
    {
      if (mcomp < ncomp) return LT;
      if (mcomp > ncomp) return GT;
    }
  else
    {
      if (mcomp < ncomp) return GT;
      if (mcomp > ncomp) return LT;
    }
  i = n_after_component_;
  while (1)
    {
      if (i == 0) break;
      if (*m > *n) return GT;
      if (*m < *n) return LT;
      m++, n++;
      --i;
    }
  return EQ;
}

monomial Monoid::make_new(const_monomial d) const
{
  if (nvars_ == 0) return NULL;
  monomial result = newarray_atomic(int, monomial_size());
  copy(d, result);
  return result;
}
monomial Monoid::make_one() const
{
  if (nvars_ == 0) return NULL;
  monomial result = newarray_atomic(int, monomial_size());
  one(result);
  return result;
}
void Monoid::remove(monomial d) const
{
#if 0
//   freemem(d);
#endif
}

void Monoid::one(monomial result) const
{
  for (int i = 0; i < monomial_size(); i++) *result++ = 0;
}

void Monoid::copy(const_monomial m, monomial result) const
{
  memcpy(result, m, monomial_size() * sizeof(int));
}

bool Monoid::divides_partial_order(const_monomial m, const_monomial n) const
// Is each exponent m_i <= n_i, for all i=0..nvars-1?
{
  if (nvars_ == 0) return true;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);
  // can we speed this up by not unpacking ??
  to_expvector(m, EXP1);
  to_expvector(n, EXP2);
  return ntuple::divides(nvars_, EXP1, EXP2);
}

bool Monoid::divides(const_monomial m, const_monomial n) const
// Does m divide n?
{
  if (nvars_ == 0) return true;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);
  // can we speed this up by not unpacking ??
  to_expvector(m, EXP1);
  to_expvector(n, EXP2);
  if (numInvertibleVariables() == 0)
    return ntuple::divides(nvars_, EXP1, EXP2);
  for (int i=0; i < nvars_; ++i)
    if (not mLaurentVariablesPredicate[i] and EXP1[i] > EXP2[i])
      return false;
  return true;
}

void Monoid::power(const_monomial m, int n, monomial result) const
{
  if (nvars_ == 0) return;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  to_expvector(m, EXP1);
  ntuple::power(nvars_, EXP1, n, EXP1);
  from_expvector(EXP1, result);
}

void Monoid::monsyz(const_monomial m,
                    const_monomial n,
                    monomial sm,
                    monomial sn) const
{
  if (nvars_ == 0) return;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);

  to_expvector(m, EXP1);
  to_expvector(n, EXP2);
  for (int i = 0; i < nvars_; i++)
    if (EXP1[i] > EXP2[i])
      {
        EXP2[i] = EXP1[i] - EXP2[i];
        EXP1[i] = 0;
      }
    else
      {
        EXP1[i] = EXP2[i] - EXP1[i];
        EXP2[i] = 0;
      }
  from_expvector(EXP1, sm);
  from_expvector(EXP2, sn);
}

void Monoid::gcd(const_monomial m, const_monomial n, monomial p) const
{
  if (nvars_ == 0) return;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);

  to_expvector(m, EXP1);
  to_expvector(n, EXP2);
  ntuple::gcd(nvars_, EXP1, EXP2, EXP1);
  from_expvector(EXP1, p);
}

void Monoid::lcm(const_monomial m, const_monomial n, monomial p) const
{
  if (nvars_ == 0) return;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);

  to_expvector(m, EXP1);
  to_expvector(n, EXP2);
  ntuple::lcm(nvars_, EXP1, EXP2, EXP1);
  from_expvector(EXP1, p);
}

void Monoid::elem_text_out(buffer &o, const_monomial m, bool p_one) const
{
  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);

  to_expvector(m, EXP1);
  ntuple::elem_text_out(o, nvars_, EXP1, varnames_, p_one);
}

void Monoid::multi_degree(const_monomial m, monomial result) const
{
  if (degree_monoid()->n_vars() == 0) return;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);

  degree_monoid()->one(result);
  if (nvars_ == 0) return;
  monomial mon1 = degree_monoid()->make_one();

  to_expvector(m, EXP1);

  for (int i = 0; i < nvars_; i++)
    if (EXP1[i] != 0)
      {
        degree_monoid()->power(degree_of_var(i), EXP1[i], mon1);
        degree_monoid()->mult(result, mon1, result);
      }
  degree_monoid()->remove(mon1);
}

void Monoid::degree_of_varpower(const_varpower vp, monomial result) const
{
  if (nvars_ == 0) return;
  if (degree_monoid()->n_vars() == 0) return;

  degree_monoid()->one(result);
  monomial mon1 = degree_monoid()->make_one();

  for (index_varpower j = vp; j.valid(); ++j)
    {
      int v = j.var();
      int e = j.exponent();
      degree_monoid()->power(degree_of_var(v), e, mon1);
      degree_monoid()->mult(result, mon1, result);
    }
  degree_monoid()->remove(mon1);
}

int Monoid::primary_degree(const_monomial m) const
{
  return degree_weights(m, primary_degree_of_vars());
}

int Monoid::degree_weights(const_monomial m, M2_arrayint wts) const
{
  if (nvars_ == 0) return 0;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  to_expvector(m, EXP1);
  int sz = (wts->len < nvars_ ? wts->len : nvars_);
  return ntuple::weight(sz, EXP1, wts);
}

template<typename T>
T Monoid::degree_weights(const_monomial m, const std::vector<T>& wts) const
{
  if (nvars_ == 0) return 0;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  to_expvector(m, EXP1);
  int sz = (wts.size() < nvars_ ? wts.size() : nvars_);
  T wt = 0;
  for (int i=0; i<sz; i++)
    wt += EXP1[i] * wts[i];
  return wt;
}

template int Monoid::degree_weights<int>(const_monomial m, const std::vector<int>& wts) const;

int Monoid::simple_degree(const_monomial m) const
{
  if (nvars_ == 0) return 0;

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  to_expvector(m, EXP1);
  return ntuple::degree(nvars_, EXP1);
}

bool Monoid::is_one(const_monomial m) const
{
  for (int i = 0; i < monomial_size(); i++)
    if (*m++ != 0) return false;
  return true;
}

bool Monoid::is_invertible(const_monomial m) const
// is every variable that occurs
// in 'm' allowed to be negative?
{
  if (n_invertible_vars_ == 0)
    {
      // Only the trivial monomial is invertible in this case
      return is_one(m);
    }

  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  to_expvector(m, EXP1);
  for (int i = 0; i < nvars_; i++)
    if (!monorder_->is_laurent[i] && EXP1[i] > 0) return false;
  return true;
}

void Monoid::from_varpower(const_varpower vp, monomial result) const
{
  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  varpower::to_ntuple(nvars_, vp, EXP1);
  from_expvector(EXP1, result);
}

void Monoid::to_varpower(const_monomial m, intarray &result_vp) const
{
  exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
  to_expvector(m, EXP1);
  varpower::from_ntuple(nvars_, EXP1, result_vp);
}

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e monoid.o "
// indent-tabs-mode: nil
// End: