1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
// Copyright 1996 Michael E. Stillman
#include <ctype.h>
#include "util.hpp"
#include "text-io.hpp"
#include "monoid.hpp"
#include <assert.h>
#include <string.h>
#include "buffer.hpp"
#include "error.h"
#include "exceptions.hpp"
#include "interface/monomial-ordering.h"
#include "ntuple.hpp"
#include "overflow.hpp"
#include "polyring.hpp"
#include "varpower.hpp"
Monoid *Monoid::trivial_monoid = 0;
// ONLY to be called by PolyRing::get_trivial_poly_ring()
void Monoid::set_trivial_monoid_degree_ring(const PolynomialRing *DR)
{
Monoid *M = get_trivial_monoid();
M->degree_ring_ = DR;
M->degree_monoid_ = M;
}
Monoid::Monoid()
: nvars_(0),
varnames_(nullptr),
degvals_(nullptr),
heftvals_(nullptr),
heft_degree_of_var_(nullptr),
degree_ring_(nullptr), // will be set later
degree_monoid_(nullptr), // will be set later
mo_(nullptr),
monorder_(nullptr),
overflow(0),
exp_size(0),
monomial_size_(0),
monomial_bound_(0),
n_invertible_vars_(0),
n_before_component_(0),
n_after_component_(0),
component_up_(true),
local_vars(nullptr),
first_weights_slot_(-1)
{
}
Monoid::~Monoid() {}
Monoid *Monoid::get_trivial_monoid()
{
if (trivial_monoid == 0) trivial_monoid = new Monoid;
return trivial_monoid;
}
Monoid *Monoid::create(const MonomialOrdering *mo,
M2_ArrayString names,
const PolynomialRing *deg_ring,
M2_arrayint degs,
M2_arrayint hefts)
{
unsigned int nvars = rawNumberOfVariables(mo);
;
unsigned int eachdeg = deg_ring->n_vars();
if (degs->len != nvars * eachdeg)
{
ERROR("degree list should be of length %d", nvars * eachdeg);
return 0;
}
if (nvars != names->len)
{
ERROR("expected %d variable names", nvars);
return 0;
}
return new Monoid(mo, names, deg_ring, degs, hefts);
}
Monoid *Monoid::create(const MonomialOrdering *mo,
const std::vector<std::string>& names,
const PolynomialRing *DR, /* degree ring */
const std::vector<int>& degs,
const std::vector<int>& hefts)
{
return create(mo,
toM2ArrayString(names),
DR,
stdvector_to_M2_arrayint(degs),
stdvector_to_M2_arrayint(hefts));
}
Monoid::Monoid(const MonomialOrdering *mo,
M2_ArrayString names,
const PolynomialRing *deg_ring,
M2_arrayint degs,
M2_arrayint hefts)
: nvars_(rawNumberOfVariables(mo)),
varnames_(names),
degvals_(degs),
heftvals_(hefts),
heft_degree_of_var_(nullptr), // set below, except in the trivial case.
degree_ring_(deg_ring),
degree_monoid_(deg_ring->getMonoid()),
mo_(mo),
monorder_(nullptr), // set below
overflow(0),
exp_size(0), // set below
monomial_size_(0), // set below
monomial_bound_(0),
n_invertible_vars_(0), // set below
n_before_component_(0), // set below
n_after_component_(0), // set below
component_up_(true), // set below
local_vars(nullptr), // set below
first_weights_slot_(-1) // set below
// nslots: set below
{
monorder_ = monomialOrderMake(mo);
monomial_size_ = monorder_->nslots;
n_before_component_ = monorder_->nslots_before_component;
n_after_component_ = monomial_size_ - n_before_component_;
component_up_ = monorder_->component_up;
// Set nslots_
int total = 0;
for (int i = 0; i < monorder_->nblocks; i++)
{
total += monorder_->blocks[i].nslots;
nslots_.push_back(total);
}
// Set first_weight_value_
bool get_out = false;
first_weights_slot_ = -1;
for (int i = 0; i < monorder_->nblocks && !get_out; i++)
{
switch (monorder_->blocks[i].typ)
{
case MO_LEX:
case MO_LEX2:
case MO_LEX4:
case MO_NC_LEX:
get_out = true;
break;
case MO_REVLEX:
case MO_LAURENT:
case MO_LAURENT_REVLEX:
case MO_GREVLEX:
case MO_GREVLEX2:
case MO_GREVLEX4:
case MO_GREVLEX_WTS:
case MO_GREVLEX2_WTS:
case MO_GREVLEX4_WTS:
case MO_WEIGHTS:
first_weights_slot_ = 0;
case MO_POSITION_UP:
continue;
case MO_POSITION_DOWN:
continue;
default:
INTERNAL_ERROR("monomial order block type not handled");
}
}
exp_size = EXPONENT_BYTE_SIZE(nvars_);
n_invertible_vars_ = rawNumberOfInvertibleVariables(mo_);
set_degrees();
set_overflow_flags();
local_vars = rawNonTermOrderVariables(mo);
for (int i=0; i<n_vars(); ++i)
{
bool isLaurent = isLaurentVariable(i);
mLaurentVariablesPredicate.push_back(isLaurent);
}
// Debugging only:
// fprintf(stderr, "%d variables < 1\n", local_vars->len);
// if (local_vars->len > 0)
// {
// fprintf(stderr, "they are: ");
// for (int i=0; i<local_vars->len; i++)
// fprintf(stderr, "%d ", local_vars->array[i]);
// fprintf(stderr, "\n");
// }
}
void Monoid::set_degrees()
{
if (degree_monoid_ == NULL)
{
degree_of_var_.push_back(static_cast<const_monomial>(NULL));
return;
}
// Set 'degree_of_var
int degvars = degree_monoid_->n_vars();
int *t = degvals_->array;
heft_degree_of_var_ = M2_makearrayint(nvars_);
if (heftvals_->len != degvars)
{
ERROR("internal error: heftvals_->len == %d != degvars == %d",
heftvals_->len,
degvars);
return;
}
if (degvars > 0)
for (int i = 0; i < nvars_; i++)
{
monomial m = degree_monoid_->make_one();
degree_monoid_->from_expvector(t, m);
degree_of_var_.push_back(m);
heft_degree_of_var_->array[i] = ntuple::weight(degvars, t, heftvals_);
t += degvars;
}
else
{
for (int i = 0; i < nvars_; i++)
{
monomial m = degree_monoid_->make_one();
degree_monoid_->from_expvector(t, m);
degree_of_var_.push_back(m);
heft_degree_of_var_->array[i] = 1;
}
}
degree_of_var_.push_back(degree_monoid_->make_one());
}
std::vector<int> Monoid::getFirstWeightVector() const
{
std::vector<int> result;
// grab the first weight vector
if (getMonomialOrdering()->len > 0 and
getMonomialOrdering()->array[0]->type == MO_WEIGHTS)
{
int i;
result.reserve(n_vars());
const int *wts = getMonomialOrdering()->array[0]->wts;
for (i = 0; i < getMonomialOrdering()->array[0]->nvars; i++)
result.push_back(wts[i]);
for (; i < n_vars(); i++) result.push_back(0);
}
return result;
}
std::vector<int> Monoid::getPrimaryDegreeVector() const
{
std::vector<int> result;
M2_arrayint degs = primary_degree_of_vars();
for (int i = 0; i < degs->len; i++) result.push_back(degs->array[i]);
return result;
}
void Monoid::set_overflow_flags()
{
overflow = newarray_atomic(enum overflow_type, monomial_size_);
enum overflow_type flag;
int i = 0, k = 0;
for (; i < monorder_->nblocks; i++)
{
mo_block *b = &monorder_->blocks[i];
switch (monorder_->blocks[i].typ)
{
case MO_REVLEX:
case MO_WEIGHTS:
case MO_LAURENT:
case MO_LAURENT_REVLEX:
case MO_NC_LEX:
flag = OVER;
goto fillin;
case MO_POSITION_UP:
case MO_POSITION_DOWN:
ERROR(
"internal error - MO_POSITION_DOWN or MO_POSITION_UP "
"encountered");
assert(0);
break;
case MO_LEX:
case MO_GREVLEX:
case MO_GREVLEX_WTS:
flag = OVER1;
goto fillin;
case MO_LEX2:
case MO_GREVLEX2:
case MO_GREVLEX2_WTS:
flag = OVER2;
goto fillin;
case MO_LEX4:
case MO_GREVLEX4:
case MO_GREVLEX4_WTS:
flag = OVER4;
goto fillin;
fillin:
assert(b->first_slot == k);
for (int p = b->nslots; p > 0; p--)
{
assert(k < monomial_size_);
overflow[k++] = flag;
}
break;
default:
ERROR("internal error - missing case");
assert(0);
break;
}
}
assert(k == monomial_size_);
}
bool Monoid::primary_degrees_of_vars_positive() const
{
for (int i = 0; i < nvars_; i++)
if (primary_degree_of_var(i) <= 0) return false;
return true;
}
void Monoid::text_out(buffer &o) const
{
int i;
o << "[";
for (i = 0; i < nvars_ - 1; i++) o << varnames_->array[i] << ",";
if (nvars_ > 0) o << varnames_->array[nvars_ - 1];
int ndegrees = degree_monoid()->n_vars();
o << "," << newline << " DegreeLength => " << ndegrees;
o << "," << newline << " Degrees => {";
for (i = 0; i < nvars_; i++)
{
if (i != 0) o << ", ";
if (ndegrees != 1) o << '{';
for (int j = 0; j < ndegrees; j++)
{
if (j != 0) o << ", ";
o << degvals_->array[i * ndegrees + j];
}
if (ndegrees != 1) o << '}';
}
o << "}";
if (heftvals_ != NULL)
{
o << "," << newline << " Heft => {";
for (i = 0; i < heftvals_->len; i++)
{
if (i != 0) o << ", ";
o << heftvals_->array[i];
}
o << "}";
}
if (mo_ != 0)
{
o << "," << newline << " ";
o << IM2_MonomialOrdering_to_string(mo_);
}
o << newline << " ]";
}
unsigned int Monoid::computeHashValue(const_monomial m) const
{
unsigned int seed = 0x3124252;
unsigned int hash = 0x43435728;
int len = monomial_size();
for (int i = 0; i < len; i++)
{
unsigned int val = *m++;
hash += seed * val;
seed = seed + 1342234;
}
return hash;
}
void Monoid::from_expvector(const_exponents exp, monomial result) const
{
monomialOrderEncodeFromActualExponents(monorder_, exp, result);
}
M2_arrayint Monoid::to_arrayint(const_monomial monom) const
{
M2_arrayint result = M2_makearrayint(n_vars());
to_expvector(monom, result->array);
return result;
}
void Monoid::to_expvector(const_monomial m, exponents result_exp) const
{
monomialOrderDecodeToActualExponents(monorder_, m, result_exp);
}
void Monoid::mult(const_monomial m, const_monomial n, monomial result) const
{
overflow_type *t = overflow;
for (int i = monomial_size_; i != 0; i--) switch (*t++)
{
case OVER:
*result++ = safe::add(*m++, *n++);
break;
case OVER1:
*result++ = safe::pos_add(*m++, *n++);
break;
case OVER2:
*result++ = safe::pos_add_2(*m++, *n++);
break;
case OVER4:
*result++ = safe::pos_add_4(*m++, *n++);
break;
default:
throw(exc::internal_error("missing case"));
}
}
int Monoid::num_parts() const { return monorder_->nblocks; }
int Monoid::n_slots(int nparts) const
{
if (nparts == 0 or num_parts() == 0) return 0;
nparts--;
if (nparts < 0) return monomial_size();
if (nparts >= num_parts()) nparts = num_parts() - 1;
return nslots_[nparts];
}
bool Monoid::in_subring(int nslots, const_monomial m) const
{
for (int i = 0; i < nslots; i++)
if (*m++) return false;
return true;
}
int Monoid::partial_compare(int num, const_exponents m, const_monomial n0) const
{
if (num == 0) return EQ;
int n[this->nvars_];
to_expvector(n0, n);
for (int i = 0; i < num; i++)
if (m[i] != n[i]) return m[i] < n[i] ? LT : GT;
return EQ;
}
int Monoid::compare(const_monomial m,
int mcomp,
const_monomial n,
int ncomp) const
{
int i = n_before_component_;
while (1)
{
if (i == 0) break;
if (*m > *n) return GT;
if (*m < *n) return LT;
m++, n++;
--i;
}
if (component_up_)
{
if (mcomp < ncomp) return LT;
if (mcomp > ncomp) return GT;
}
else
{
if (mcomp < ncomp) return GT;
if (mcomp > ncomp) return LT;
}
i = n_after_component_;
while (1)
{
if (i == 0) break;
if (*m > *n) return GT;
if (*m < *n) return LT;
m++, n++;
--i;
}
return EQ;
}
monomial Monoid::make_new(const_monomial d) const
{
if (nvars_ == 0) return NULL;
monomial result = newarray_atomic(int, monomial_size());
copy(d, result);
return result;
}
monomial Monoid::make_one() const
{
if (nvars_ == 0) return NULL;
monomial result = newarray_atomic(int, monomial_size());
one(result);
return result;
}
void Monoid::remove(monomial d) const
{
#if 0
// freemem(d);
#endif
}
void Monoid::one(monomial result) const
{
for (int i = 0; i < monomial_size(); i++) *result++ = 0;
}
void Monoid::copy(const_monomial m, monomial result) const
{
memcpy(result, m, monomial_size() * sizeof(int));
}
bool Monoid::divides_partial_order(const_monomial m, const_monomial n) const
// Is each exponent m_i <= n_i, for all i=0..nvars-1?
{
if (nvars_ == 0) return true;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);
// can we speed this up by not unpacking ??
to_expvector(m, EXP1);
to_expvector(n, EXP2);
return ntuple::divides(nvars_, EXP1, EXP2);
}
bool Monoid::divides(const_monomial m, const_monomial n) const
// Does m divide n?
{
if (nvars_ == 0) return true;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);
// can we speed this up by not unpacking ??
to_expvector(m, EXP1);
to_expvector(n, EXP2);
if (numInvertibleVariables() == 0)
return ntuple::divides(nvars_, EXP1, EXP2);
for (int i=0; i < nvars_; ++i)
if (not mLaurentVariablesPredicate[i] and EXP1[i] > EXP2[i])
return false;
return true;
}
void Monoid::power(const_monomial m, int n, monomial result) const
{
if (nvars_ == 0) return;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
ntuple::power(nvars_, EXP1, n, EXP1);
from_expvector(EXP1, result);
}
void Monoid::monsyz(const_monomial m,
const_monomial n,
monomial sm,
monomial sn) const
{
if (nvars_ == 0) return;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
to_expvector(n, EXP2);
for (int i = 0; i < nvars_; i++)
if (EXP1[i] > EXP2[i])
{
EXP2[i] = EXP1[i] - EXP2[i];
EXP1[i] = 0;
}
else
{
EXP1[i] = EXP2[i] - EXP1[i];
EXP2[i] = 0;
}
from_expvector(EXP1, sm);
from_expvector(EXP2, sn);
}
void Monoid::gcd(const_monomial m, const_monomial n, monomial p) const
{
if (nvars_ == 0) return;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
to_expvector(n, EXP2);
ntuple::gcd(nvars_, EXP1, EXP2, EXP1);
from_expvector(EXP1, p);
}
void Monoid::lcm(const_monomial m, const_monomial n, monomial p) const
{
if (nvars_ == 0) return;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
exponents EXP2 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
to_expvector(n, EXP2);
ntuple::lcm(nvars_, EXP1, EXP2, EXP1);
from_expvector(EXP1, p);
}
void Monoid::elem_text_out(buffer &o, const_monomial m, bool p_one) const
{
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
ntuple::elem_text_out(o, nvars_, EXP1, varnames_, p_one);
}
void Monoid::multi_degree(const_monomial m, monomial result) const
{
if (degree_monoid()->n_vars() == 0) return;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
degree_monoid()->one(result);
if (nvars_ == 0) return;
monomial mon1 = degree_monoid()->make_one();
to_expvector(m, EXP1);
for (int i = 0; i < nvars_; i++)
if (EXP1[i] != 0)
{
degree_monoid()->power(degree_of_var(i), EXP1[i], mon1);
degree_monoid()->mult(result, mon1, result);
}
degree_monoid()->remove(mon1);
}
void Monoid::degree_of_varpower(const_varpower vp, monomial result) const
{
if (nvars_ == 0) return;
if (degree_monoid()->n_vars() == 0) return;
degree_monoid()->one(result);
monomial mon1 = degree_monoid()->make_one();
for (index_varpower j = vp; j.valid(); ++j)
{
int v = j.var();
int e = j.exponent();
degree_monoid()->power(degree_of_var(v), e, mon1);
degree_monoid()->mult(result, mon1, result);
}
degree_monoid()->remove(mon1);
}
int Monoid::primary_degree(const_monomial m) const
{
return degree_weights(m, primary_degree_of_vars());
}
int Monoid::degree_weights(const_monomial m, M2_arrayint wts) const
{
if (nvars_ == 0) return 0;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
int sz = (wts->len < nvars_ ? wts->len : nvars_);
return ntuple::weight(sz, EXP1, wts);
}
template<typename T>
T Monoid::degree_weights(const_monomial m, const std::vector<T>& wts) const
{
if (nvars_ == 0) return 0;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
int sz = (wts.size() < nvars_ ? wts.size() : nvars_);
T wt = 0;
for (int i=0; i<sz; i++)
wt += EXP1[i] * wts[i];
return wt;
}
template int Monoid::degree_weights<int>(const_monomial m, const std::vector<int>& wts) const;
int Monoid::simple_degree(const_monomial m) const
{
if (nvars_ == 0) return 0;
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
return ntuple::degree(nvars_, EXP1);
}
bool Monoid::is_one(const_monomial m) const
{
for (int i = 0; i < monomial_size(); i++)
if (*m++ != 0) return false;
return true;
}
bool Monoid::is_invertible(const_monomial m) const
// is every variable that occurs
// in 'm' allowed to be negative?
{
if (n_invertible_vars_ == 0)
{
// Only the trivial monomial is invertible in this case
return is_one(m);
}
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
for (int i = 0; i < nvars_; i++)
if (!monorder_->is_laurent[i] && EXP1[i] > 0) return false;
return true;
}
void Monoid::from_varpower(const_varpower vp, monomial result) const
{
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
varpower::to_ntuple(nvars_, vp, EXP1);
from_expvector(EXP1, result);
}
void Monoid::to_varpower(const_monomial m, intarray &result_vp) const
{
exponents EXP1 = ALLOCATE_EXPONENTS(exp_size);
to_expvector(m, EXP1);
varpower::from_ntuple(nvars_, EXP1, result_vp);
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e monoid.o "
// indent-tabs-mode: nil
// End:
|