1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
|
// Copyright 2005-2012 Michael E. Stillman
#ifndef _mutable_mat_defs_hpp_
#define _mutable_mat_defs_hpp_
#include <iostream>
#include "mat.hpp"
namespace M2 {
class ARingZZp;
class ARingRR;
class ARingCC;
class ARingRRR;
class ARingCCC;
};
template <typename RT>
class DMat;
template <typename RT>
class SMat;
template <typename MT>
bool isDense(const MT& mat);
template <typename RT>
bool isDense(const DMat<RT>& mat)
{
return true;
}
template <typename RT>
bool isDense(const SMat<RT>& mat)
{
return false;
}
template <typename RT>
struct EigenTypes
{
typedef RT EigenvalueType;
typedef RT EigenvectorType;
typedef RT HermitianEigenvalueType;
typedef RT HermitianEigenvectorType;
};
template <>
struct EigenTypes<M2::ARingRR>
{
typedef M2::ARingCC EigenvalueType;
typedef M2::ARingCC EigenvectorType;
typedef M2::ARingRR HermitianEigenvalueType;
typedef M2::ARingRR HermitianEigenvectorType;
};
template <>
struct EigenTypes<M2::ARingCC>
{
typedef M2::ARingCC EigenvalueType;
typedef M2::ARingCC EigenvectorType;
typedef M2::ARingRR HermitianEigenvalueType;
typedef M2::ARingCC HermitianEigenvectorType;
};
template <>
struct EigenTypes<M2::ARingRRR>
{
typedef M2::ARingCCC EigenvalueType;
typedef M2::ARingCCC EigenvectorType;
typedef M2::ARingRRR HermitianEigenvalueType;
typedef M2::ARingRRR HermitianEigenvectorType;
};
template <>
struct EigenTypes<M2::ARingCCC>
{
typedef M2::ARingCCC EigenvalueType;
typedef M2::ARingCCC EigenvectorType;
typedef M2::ARingRRR HermitianEigenvalueType;
typedef M2::ARingCCC HermitianEigenvectorType;
};
// The following include file is for creating a Matrix, in "toMatrix"
#include "matrix-con.hpp"
#include "dmat.hpp"
#include "smat.hpp"
#include "mat-elem-ops.hpp"
#include "mat-arith.hpp"
#include "mat-linalg.hpp"
template <typename CoeffRing>
Matrix* toMatrix(const Ring* R, const DMat<CoeffRing>& A)
{
int nrows = static_cast<int>(A.numRows());
int ncols = static_cast<int>(A.numColumns());
FreeModule* F = R->make_FreeModule(nrows);
MatrixConstructor result(F, ncols);
if (nrows == 0 || ncols == 0) return result.to_matrix();
for (int c = 0; c < ncols; c++)
{
int r = 0;
auto end = A.columnEnd(c);
for (auto j = A.columnBegin(c); not(j == end); ++j, ++r)
{
if (not A.ring().is_zero(*j))
{
ring_elem a;
A.ring().to_ring_elem(a, *j);
result.set_entry(r, c, a);
}
}
}
result.compute_column_degrees();
return result.to_matrix();
}
template <typename CoeffRing>
Matrix* toMatrix(const Ring* R, const SMat<CoeffRing>& A)
{
int nrows = static_cast<int>(A.numRows());
int ncols = static_cast<int>(A.numColumns());
FreeModule* F = R->make_FreeModule(nrows);
MatrixConstructor result(F, ncols);
if (nrows == 0 || ncols == 0) return result.to_matrix();
ring_elem f;
auto i = A.begin();
for (int c = 0; c < ncols; c++)
{
ring_elem a;
for (i.set(c); i.valid(); i.next())
{
i.copy_elem(a);
int r = static_cast<int>(i.row());
result.set_entry(r, c, a);
}
}
result.compute_column_degrees();
return result.to_matrix();
}
inline bool error_column_bound(size_t c, size_t ncols)
{
if (c >= ncols)
{
ERROR("column out of range");
return true;
}
return false;
}
inline bool error_row_bound(size_t r, size_t nrows)
{
if (r >= nrows)
{
ERROR("row out of range");
return true;
}
return false;
}
/**
* \ingroup matrices
*/
template <typename Mat>
class MutableMat : public MutableMatrix
{
public:
typedef Mat MatType;
typedef typename Mat::CoeffRing CoeffRing;
typedef typename CoeffRing::elem elem;
typedef MatElementaryOps<Mat> MatOps;
typedef typename EigenTypes<CoeffRing>::EigenvalueType EigenvalueType;
typedef typename EigenTypes<CoeffRing>::EigenvectorType EigenvectorType;
typedef typename EigenTypes<CoeffRing>::HermitianEigenvalueType
HermitianEigenvalueType;
typedef typename EigenTypes<CoeffRing>::HermitianEigenvectorType
HermitianEigenvectorType;
private:
const Ring* mRing;
Mat mat;
// This class wraps the operations for Mat to make a MutableMatrix
// Same operations as in MutableMatrix. Almost nothing is
// done except to call the Mat routines.
MutableMat() {}
MutableMat(const Ring* R, const Mat& m) : mRing(R), mat(m) {}
public:
// This constructor makes a zero matrix
MutableMat(const Ring* R, const CoeffRing* coeffR, size_t nrows, size_t ncols)
: mRing(R), mat(*coeffR, nrows, ncols)
{
}
// Make a zero matrix, using the same ring and density taken from 'mat'.
MutableMat* makeZeroMatrix(size_t nrows, size_t ncols) const
{
return new MutableMat(get_ring(), &mat.ring(), nrows, ncols);
}
Mat* get_Mat() { return &mat; }
const Mat* get_Mat() const { return &mat; }
Mat& getMat() { return mat; }
const Mat& getMat() const { return mat; }
#if 0
// MESXXX
class iterator : public MutableMatrix::iterator
{
typename Mat::iterator i;
public:
iterator(const Mat *M0) : i(M0) {}
void set(size_t col0) { i.set(col0); }
void next() { i.next(); }
bool valid() { return i.valid(); }
size_t row() { return i.row(); }
const elem& value() { return i.value(); }
void copy_ring_elem(ring_elem &result) { i.copy_elem(result); }
};
#endif
#if 0
// MESXXX
virtual iterator * begin() const { return new iterator(&mat); }
#endif
virtual const Ring* get_ring() const { return mRing; }
virtual size_t n_rows() const { return mat.numRows(); }
virtual size_t n_cols() const { return mat.numColumns(); }
virtual bool is_dense() const { return isDense(mat); }
virtual Matrix* to_matrix() const { return toMatrix(get_ring(), mat); }
virtual MutableMat* copy(bool prefer_dense) const
{
#if 0
MutableMat *result = new MutableMat;
Mat *m = mat.copy();
result->mat.grab(m);
return result;
#endif
return clone();
}
virtual MutableMat* clone() const
{
MutableMat* result = new MutableMat(mRing, mat);
return result;
// result->mat.copy(mat);
// Mat *m = new Mat(mat); // copies mat
// return new MutableMat(*m); // places copy into result
}
virtual size_t lead_row(size_t col) const
{
return MatOps::lead_row(mat, col);
}
/* returns the largest index row which has a non-zero value in column 'col'.
returns -1 if the column is 0 */
virtual size_t lead_row(size_t col, ring_elem& result) const
/* returns the largest index row which has a non-zero value in column 'col'.
Also sets result to be the entry at this index.
returns -1 if the column is 0 */
{
elem b;
mat.ring().init(b);
mat.ring().set_zero(b);
size_t ret = MatOps::lead_row(mat, col, b);
if (ret != static_cast<size_t>(-1)) mat.ring().to_ring_elem(result, b);
mat.ring().clear(b);
return ret;
}
virtual bool get_entry(size_t r, size_t c, ring_elem& result) const
// Returns false if (r,c) is out of range or if result is 0. No error
// is returned. result <-- this(r,c), and is set to zero if false is returned.
{
if (r < n_rows() && c < n_cols())
{
elem a;
mat.ring().init(a);
MatOps::getEntry(mat, r, c, a);
bool is_nonzero = not mat.ring().is_zero(a);
mat.ring().to_ring_elem(result, a);
mat.ring().clear(a);
return is_nonzero;
}
result = get_ring()->zero();
return false;
}
virtual bool set_entry(size_t r, size_t c, const ring_elem a)
// Returns false if (r,c) is out of range, or the ring of a is wrong.
{
if (error_row_bound(r, n_rows())) return false;
if (error_column_bound(c, n_cols())) return false;
elem b;
mat.ring().init(b);
mat.ring().from_ring_elem(b, a);
MatOps::setEntry(mat, r, c, b);
mat.ring().clear(b);
return true;
}
///////////////////////////////
// Row and column operations //
///////////////////////////////
// The following routines return false if one of the row or columns given
// is out of range.
virtual bool interchange_rows(size_t i, size_t j)
/* swap rows: row(i) <--> row(j) */
{
size_t nrows = n_rows();
if (error_row_bound(i, nrows) || error_row_bound(j, nrows)) return false;
MatOps::interchange_rows(mat, i, j);
return true;
}
virtual bool interchange_columns(size_t i, size_t j)
/* swap columns: column(i) <--> column(j) */
{
size_t ncols = n_cols();
if (error_column_bound(i, ncols) || error_column_bound(j, ncols))
return false;
MatOps::interchange_columns(mat, i, j);
return true;
}
virtual bool scale_row(size_t i, ring_elem r)
/* row(i) <- r * row(i) */
{
size_t nrows = n_rows();
if (error_row_bound(i, nrows)) return false;
elem b;
mat.ring().init(b);
mat.ring().from_ring_elem(b, r);
MatOps::scale_row(mat, i, b);
mat.ring().clear(b);
return true;
}
virtual bool scale_column(size_t i, ring_elem r)
/* column(i) <- r * column(i) */
{
size_t ncols = n_cols();
if (error_column_bound(i, ncols)) return false;
elem b;
mat.ring().init(b);
mat.ring().from_ring_elem(b, r);
MatOps::scale_column(mat, i, b);
mat.ring().clear(b);
return true;
}
virtual bool divide_row(size_t i, ring_elem r)
/* row(i) <- row(i) / r */
{
size_t nrows = n_rows();
if (error_row_bound(i, nrows)) return false;
elem b;
mat.ring().init(b);
mat.ring().from_ring_elem(b, r);
MatOps::divide_row(mat, i, b);
mat.ring().clear(b);
return true;
}
virtual bool divide_column(size_t i, ring_elem r)
/* column(i) <- column(i) / r */
{
size_t ncols = n_cols();
if (error_column_bound(i, ncols)) return false;
elem b;
mat.ring().init(b);
mat.ring().from_ring_elem(b, r);
MatOps::divide_column(mat, i, b);
mat.ring().clear(b);
return true;
}
virtual bool row_op(size_t i, ring_elem r, size_t j)
/* row(i) <- row(i) + r * row(j) */
{
size_t nrows = n_rows();
if (error_row_bound(i, nrows) || error_row_bound(j, nrows)) return false;
if (i == j) return true;
elem b;
mat.ring().init(b);
mat.ring().from_ring_elem(b, r);
MatOps::row_op(mat, i, b, j);
mat.ring().clear(b);
return true;
}
virtual bool column_op(size_t i, ring_elem r, size_t j)
/* column(i) <- column(i) + r * column(j) */
{
size_t ncols = n_cols();
if (error_column_bound(i, ncols) || error_column_bound(j, ncols))
return false;
if (i == j) return true;
elem b;
mat.ring().init(b);
mat.ring().from_ring_elem(b, r);
MatOps::column_op(mat, i, b, j);
mat.ring().clear(b);
return true;
}
virtual bool column2by2(size_t c1,
size_t c2,
ring_elem a1,
ring_elem a2,
ring_elem b1,
ring_elem b2)
/* column(c1) <- a1 * column(c1) + a2 * column(c2),
column(c2) <- b1 * column(c1) + b2 * column(c2)
*/
{
size_t ncols = n_cols();
if (error_column_bound(c1, ncols) || error_column_bound(c2, ncols))
return false;
if (c1 == c2) return true;
elem aa1, aa2, bb1, bb2;
mat.ring().init(aa1);
mat.ring().init(aa2);
mat.ring().init(bb1);
mat.ring().init(bb2);
mat.ring().from_ring_elem(aa1, a1);
mat.ring().from_ring_elem(aa2, a2);
mat.ring().from_ring_elem(bb1, b1);
mat.ring().from_ring_elem(bb2, b2);
MatOps::column2by2(mat, c1, c2, aa1, aa2, bb1, bb2);
mat.ring().clear(aa1);
mat.ring().clear(aa2);
mat.ring().clear(bb1);
mat.ring().clear(bb2);
return true;
}
virtual bool row2by2(size_t r1,
size_t r2,
ring_elem a1,
ring_elem a2,
ring_elem b1,
ring_elem b2)
/* row(r1) <- a1 * row(r1) + a2 * row(r2),
row(r2) <- b1 * row(r1) + b2 * row(r2)
*/
{
size_t nrows = n_rows();
if (error_row_bound(r1, nrows) || error_row_bound(r2, nrows)) return false;
if (r1 == r2) return true;
elem aa1, aa2, bb1, bb2;
mat.ring().init(aa1);
mat.ring().init(aa2);
mat.ring().init(bb1);
mat.ring().init(bb2);
mat.ring().from_ring_elem(aa1, a1);
mat.ring().from_ring_elem(aa2, a2);
mat.ring().from_ring_elem(bb1, b1);
mat.ring().from_ring_elem(bb2, b2);
MatOps::row2by2(mat, r1, r2, aa1, aa2, bb1, bb2);
mat.ring().clear(aa1);
mat.ring().clear(aa2);
mat.ring().clear(bb1);
mat.ring().clear(bb2);
return true;
}
virtual bool dot_product(size_t c1, size_t c2, ring_elem& result) const
{
size_t ncols = n_cols();
if (error_column_bound(c1, ncols) || error_column_bound(c2, ncols))
return false;
elem a;
mat.ring().init(a);
mat.ring().set_zero(a);
MatOps::dot_product(mat, c1, c2, a);
mat.ring().to_ring_elem(result, a);
mat.ring().clear(a);
return true;
}
virtual bool row_permute(size_t start_row, M2_arrayint perm)
{
return MatOps::row_permute(mat, start_row, perm);
}
virtual bool column_permute(size_t start_col, M2_arrayint perm)
{
return MatOps::column_permute(mat, start_col, perm);
}
virtual bool insert_columns(size_t i, size_t n_to_add)
/* Insert n_to_add columns directly BEFORE column i. */
{
if (i > n_cols())
{
ERROR("cannot insert %l columns before column %ln", n_to_add, i);
return false;
}
MatOps::insert_columns(mat, i, n_to_add);
return true;
}
virtual bool insert_rows(size_t i, size_t n_to_add)
/* Insert n_to_add rows directly BEFORE row i. */
{
if (i > n_rows())
{
ERROR("cannot insert %l rows before row %ln", n_to_add, i);
return false;
}
MatOps::insert_rows(mat, i, n_to_add);
return true;
}
virtual bool delete_columns(size_t i, size_t j)
/* Delete columns i .. j from M */
{
size_t ncols = n_cols();
if (error_column_bound(i, ncols) || error_column_bound(j, ncols))
{
ERROR("column index out of range");
return false;
}
MatOps::delete_columns(mat, i, j);
return true;
}
virtual bool delete_rows(size_t i, size_t j)
/* Delete rows i .. j from M */
{
size_t nrows = n_rows();
if (error_row_bound(i, nrows) || error_row_bound(j, nrows))
{
ERROR("row index out of range");
return false;
}
MatOps::delete_rows(mat, i, j);
return true;
}
virtual void reduce_by_pivots() { MatOps::reduce_by_pivots(mat); }
virtual MutableMatrix* submatrix(M2_arrayint rows, M2_arrayint cols) const
{
for (size_t r = 0; r < rows->len; r++)
if (rows->array[r] < 0 || rows->array[r] >= n_rows())
{
ERROR(
"row index %d out of bounds 0..%d", rows->array[r], n_rows() - 1);
return 0;
}
for (size_t c = 0; c < cols->len; c++)
if (cols->array[c] < 0 || cols->array[c] >= n_cols())
{
ERROR("column index %d out of bounds 0..%d",
cols->array[c],
n_cols() - 1);
return 0;
}
MutableMat* result =
new MutableMat(*this); // zero matrix, over the same ring
MatOps::setFromSubmatrix(getMat(), rows, cols, result->getMat());
return result;
}
virtual MutableMatrix* submatrix(M2_arrayint cols) const
{
for (size_t c = 0; c < cols->len; c++)
if (cols->array[c] < 0 || cols->array[c] >= n_cols())
{
ERROR("column index %d out of bounds 0..%d",
cols->array[c],
n_cols() - 1);
return 0;
}
MutableMat* result =
new MutableMat(*this); // zero matrix, over the same ring
MatOps::setFromSubmatrix(getMat(), cols, result->getMat());
return result;
}
///////////////////////////////
// promote, lift, eval ////////
///////////////////////////////
virtual MutableMatrix* promote(const Ring* S) const { return 0; }
virtual MutableMatrix* lift(const Ring* R) const { return 0; }
virtual MutableMatrix* eval(const RingMap* F) const { return 0; }
///////////////////////////////
// Matrix operations //////////
///////////////////////////////
virtual bool is_zero() const { return MatrixOps::isZero(getMat()); }
virtual bool is_equal(const MutableMatrix* B) const
{
const MutableMat* B1 = dynamic_cast<const MutableMat*>(B);
if (B1 == NULL || &B1->getMat().ring() != &getMat().ring()) return false;
return MatrixOps::isEqual(getMat(), B1->getMat());
}
virtual MutableMat* add(const MutableMatrix* B) const
// return this + B. return NULL if sizes or types do not match.
{
const Mat* B1 = B->coerce_const<Mat>();
if (B1 == NULL)
{
ERROR("expected matrices with the same ring and sparsity");
return NULL;
}
if (B->get_ring() != get_ring())
{
ERROR("expected matrices with the same ring");
return NULL;
}
if (B1->numRows() != n_rows() || B1->numColumns() != n_cols())
{
ERROR("expected matrices of the same shape");
return NULL;
}
MutableMat* result = clone();
MatrixOps::addInPlace(result->getMat(), *B1);
return result;
}
virtual MutableMatrix* negate() const
{
MutableMat* result = clone();
MatrixOps::negateInPlace(result->getMat());
return result;
}
virtual MutableMat* subtract(const MutableMatrix* B) const
// return this - B. return NULL of sizes or types do not match.
{
const Mat* B1 = B->coerce_const<Mat>();
if (B1 == NULL)
{
ERROR("expected matrices with the same ring and sparsity");
return NULL;
}
if (B->get_ring() != get_ring())
{
ERROR("expected matrices with the same ring");
return NULL;
}
if (B1->numRows() != n_rows() || B1->numColumns() != n_cols())
{
ERROR("expected matrices of the same shape");
return NULL;
}
MutableMat* result = clone();
MatrixOps::subtractInPlace(result->getMat(), *B1);
return result;
}
virtual MutableMat* mult(const RingElement* f) const
// return f*this. return NULL of sizes or types do not match.
{
if (f->get_ring() != get_ring())
{
ERROR("expected same ring");
return 0;
}
elem a;
mat.ring().init(a);
mat.ring().from_ring_elem(a, f->get_value());
MutableMat* result = clone();
MatrixOps::scalarMultInPlace(result->mat, a);
mat.ring().clear(a);
return result;
}
virtual MutableMat /* or null */* transpose() const
{
MutableMat* result = makeZeroMatrix(n_cols(), n_rows());
MatrixOps::transpose(getMat(), result->getMat());
return result;
}
///////////////////////////////
// Linear algebra /////////////
///////////////////////////////
virtual M2_arrayintOrNull LU(MutableMatrix* L, MutableMatrix* U) const;
virtual M2_arrayintOrNull LUincremental(std::vector<size_t>& P, const MutableMatrix* v, int i);
virtual void triangularSolve(MutableMatrix* x, int m, int strategy);
virtual bool eigenvalues(MutableMatrix* eigenvals,
bool is_symm_or_hermitian) const;
virtual bool eigenvectors(MutableMatrix* eigenvals,
MutableMatrix* eigenvecs,
bool is_symm_or_hermitian) const;
virtual bool SVD(MutableMatrix* Sigma,
MutableMatrix* U,
MutableMatrix* Vt,
bool use_divide_and_conquer) const;
virtual bool least_squares(const MutableMatrix* b,
MutableMatrix* x,
bool assume_full_rank) const;
virtual bool QR(MutableMatrix* Q, MutableMatrix* R, bool return_QR) const;
virtual engine_RawArrayIntPairOrNull LQUPFactorizationInPlace(bool transpose);
/// Fast linear algebra routines (well, fast for some rings)
virtual size_t rank() const;
virtual const RingElement* determinant() const;
// Find the inverse matrix. If the matrix is not square, or
// the ring is one in which th matrix cannot be inverted,
// then NULL is returned, and an error message is set.
virtual MutableMatrix* invert() const;
virtual MutableMatrix* rowReducedEchelonForm() const;
// Returns an array of increasing integers {n_1, n_2, ...}
// such that if M is the matrix with rows (resp columns, if row_profile is
// false)
// then rank(M_{0..n_i-1}) + 1 = rank(M_{0..n_i}).
// NULL is returned, and an error is set, if this function is not available
// for the given choice of ring and dense/sparseness.
virtual M2_arrayintOrNull rankProfile(bool row_profile) const;
// Find a spanning set for the null space. If M = this,
// return a matrix whose columns span {x | Mx = 0}
virtual MutableMatrix* nullSpace() const;
// Returns X, if (this=A) AX=B has a solution.
// Returns NULL, if not.
// Throws an exception if any other usage issues arise (bad rings, sizes, not
// implemented...)
virtual MutableMatrix* solveLinear(const MutableMatrix* B) const;
// Returns X, if this=A is invertible, and AX=B. (so X is uniquely determined)
// Returns NULL, if A is not invertible.
// Throws an exception if any other usage issues arise.
virtual MutableMatrix* solveInvertible(const MutableMatrix* B) const;
virtual void addMultipleTo(const MutableMatrix* A, const MutableMatrix* B);
virtual void subtractMultipleTo(const MutableMatrix* A,
const MutableMatrix* B);
virtual MutableMatrix /* or null */* mult(const MutableMatrix* B) const;
// Special routines for approximate fields
virtual void clean(gmp_RR epsilon); // modifies 'this'
virtual gmp_RRorNull norm() const;
virtual M2SLEvaluator* createSLEvaluator(
M2SLProgram* P,
M2_arrayint constsPos,
M2_arrayint varsPos) const; // this = const matrix
virtual M2SLEvaluator* createCompiledSLEvaluator(
M2_string libName,
int nInputs,
int nOutputs) const; // this = const matrix
};
#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|