File: poly.hpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (340 lines) | stat: -rw-r--r-- 13,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Copyright 1995 Michael E. Stillman

#ifndef _poly_hpp_
#define _poly_hpp_

#include "ring.hpp"
#include "ringelem.hpp"
#include "skew.hpp"

///// Ring Hierarchy ///////////////////////////////////

class TermIdeal;
class Matrix;
class GBRing;
class GBRingSkew;
class GBComputation;
class ChineseRemainder;
#include "polyring.hpp"

class PolyRing : public PolyRingFlat
{
  friend class GBRingSkew;
  friend class FreeModule;
  friend class ChineseRemainder;

  friend class MatrixStream;  // for new_term()
  void initialize_poly_ring(const Ring *K,
                            const Monoid *M,
                            const PolynomialRing *deg_ring);
  // Only to be called from initialize_poly_ring and make_trivial_ZZ_poly_ring

 protected:
  void initialize_poly_ring(const Ring *K, const Monoid *M);
  // Called by subclasses (e.g. skew comm, Weyl, solvable.
  // After this, set the information for the special multiplication.
  // Then set the gb_ring

  virtual ~PolyRing();
  PolyRing() {}
  static PolyRing *trivial_poly_ring;
  static void make_trivial_ZZ_poly_ring();

 public:
  static const PolyRing *create(const Ring *K, const Monoid *M);

 public:
  virtual void clear();

  static const PolyRing *get_trivial_poly_ring();

  virtual const PolyRing *cast_to_PolyRing() const { return this; }
  virtual PolyRing *cast_to_PolyRing() { return this; }
  virtual void text_out(buffer &o) const;

  /////////////////////////
  // Arithmetic ///////////
  /////////////////////////

  ring_elem fromCoefficient(ring_elem &coeff) const;

  virtual ring_elem from_long(long n) const;
  virtual ring_elem from_int(mpz_srcptr n) const;
  virtual bool from_rational(mpq_srcptr q, ring_elem &result) const;

  virtual bool from_BigComplex(gmp_CC z, ring_elem &result) const;
  virtual bool from_BigReal(gmp_RR z, ring_elem &result) const;
  virtual bool from_Interval(gmp_RRi z, ring_elem &result) const;
  virtual bool from_double(double a, ring_elem &result) const;
  virtual bool from_complex_double(double re,
                                   double im,
                                   ring_elem &result) const;

  virtual ring_elem var(int v) const;

  virtual int index_of_var(const ring_elem a) const;
  virtual M2_arrayint support(const ring_elem a) const;

  virtual bool promote(const Ring *R,
                       const ring_elem f,
                       ring_elem &result) const;
  virtual bool lift(const Ring *R, const ring_elem f, ring_elem &result) const;

  virtual ring_elem preferred_associate(ring_elem f) const;
  ring_elem preferred_associate_divisor(ring_elem ff) const;
  // ff is an element of 'this'.
  // result is in the coefficient ring
  // If the coefficient ring of this is
  //   ZZ -- gcd of all, same sign as lead coeff
  //   QQ -- gcd(numerators)/lcm(denominators)
  //   basic field -- lead coeff
  //   frac(poly ring) -- gcd(numerators)/lcm(denominators)
  //   frac(quotient of a poly ring) -- error

  virtual bool is_unit(const ring_elem f) const;
  virtual bool is_zero(const ring_elem f) const;
  virtual bool is_equal(const ring_elem f, const ring_elem g) const;
  virtual int compare_elems(const ring_elem f, const ring_elem g) const;

  virtual bool is_homogeneous(const ring_elem f) const;
  virtual void degree(const ring_elem f, int *d) const;
  virtual bool multi_degree(const ring_elem f, int *d) const;
  virtual void degree_weights(const ring_elem f,
                              M2_arrayint wts,
                              int &lo,
                              int &hi) const;
  virtual ring_elem homogenize(const ring_elem f,
                               int v,
                               int deg,
                               M2_arrayint wts) const;
  virtual ring_elem homogenize(const ring_elem f, int v, M2_arrayint wts) const;

  virtual ring_elem copy(const ring_elem f) const;
  virtual void remove(ring_elem &f) const;

  void internal_negate_to(ring_elem &f) const;
  void internal_add_to(ring_elem &f, ring_elem &g) const;
  void internal_subtract_to(ring_elem &f, ring_elem &g) const;

  virtual ring_elem negate(const ring_elem f) const;
  virtual ring_elem add(const ring_elem f, const ring_elem g) const;
  virtual ring_elem subtract(const ring_elem f, const ring_elem g) const;
  virtual ring_elem mult(const ring_elem f, const ring_elem g) const;
  virtual ring_elem power(const ring_elem f, mpz_srcptr n) const;
  virtual ring_elem power(const ring_elem f, int n) const;
  virtual ring_elem invert(const ring_elem f) const;
  virtual ring_elem divide(const ring_elem f, const ring_elem g) const;
  ring_elem gcd(const ring_elem f, const ring_elem g) const;
  ring_elem gcd_extended(const ring_elem f,
                         const ring_elem g,
                         ring_elem &u,
                         ring_elem &v) const;

 protected:
  void minimal_monomial(ring_elem f, int *&monom) const;
  Nterm *division_algorithm(Nterm *f, Nterm *g, Nterm *&quot) const;
  Nterm *division_algorithm(Nterm *f, Nterm *g) const;
  Nterm *powerseries_division_algorithm(Nterm *f, Nterm *g, Nterm *&quot) const;
  std::vector<int> setNegativeExponentMonomial(Nterm* f) const;
  Nterm *division_algorithm_with_laurent_variables(Nterm *f, Nterm *g, Nterm *&quot) const;

 public:
  virtual ring_elem remainder(const ring_elem f, const ring_elem g) const;
  virtual ring_elem quotient(const ring_elem f, const ring_elem g) const;
  virtual ring_elem remainderAndQuotient(const ring_elem f,
                                         const ring_elem g,
                                         ring_elem &quot) const;

  virtual void syzygy(const ring_elem a,
                      const ring_elem b,
                      ring_elem &x,
                      ring_elem &y) const;

  virtual ring_elem random() const;

  virtual void elem_text_out(buffer &o,
                             const ring_elem f,
                             bool p_one = true,
                             bool p_plus = false,
                             bool p_parens = false) const;

  virtual ring_elem eval(const RingMap *map,
                         const ring_elem f,
                         int first_var) const;

  virtual ring_elem mult_by_term(const ring_elem f,
                                 const ring_elem c,
                                 const int *m) const;

  virtual int n_flat_terms(const ring_elem f) const;
  virtual int n_logical_terms(int nvars0, const ring_elem f) const;

  virtual ring_elem get_coeff(const Ring *coeffR,
                              const ring_elem f,
                              const int *vp) const;
  virtual ring_elem get_terms(int nvars0,
                              const ring_elem f,
                              int lo,
                              int hi) const;

  virtual ring_elem make_flat_term(const ring_elem a, const int *m) const;
  virtual ring_elem make_logical_term(const Ring *coeffR,
                                      const ring_elem a,
                                      const int *exp) const;

  virtual ring_elem lead_flat_coeff(const ring_elem f) const;
  virtual ring_elem lead_logical_coeff(const Ring *coeffR,
                                       const ring_elem f) const;

  virtual const int *lead_flat_monomial(const ring_elem f) const;
  virtual void lead_logical_exponents(int nvars0,
                                      const ring_elem f,
                                      int *result_exp) const;

  ring_elem lead_term(const ring_elem f) const;  // copies the lead term

  virtual engine_RawArrayPairOrNull list_form(const Ring *coeffR,
                                              const ring_elem f) const;
  virtual ring_elem *get_parts(const M2_arrayint wts,
                               const ring_elem f,
                               long &result_len) const;
  virtual ring_elem get_part(const M2_arrayint wts,
                             const ring_elem f,
                             bool lobound_given,
                             bool hibound_given,
                             long lobound,
                             long hibound) const;

  virtual void mult_coeff_to(ring_elem a, ring_elem &f) const;
  virtual void divide_coeff_to(ring_elem &f, ring_elem a) const;

  virtual ring_elem lead_term(int nparts, const ring_elem f) const;

 public:
  ///////////////////////////////////////
  // Univariate polynomial translation //
  ///////////////////////////////////////
  ring_elem fromSmallIntegerCoefficients(const std::vector<long> &coeffs,
                                         int var) const;

 public:
  /////////////////////////
  // RRR and CCC support //
  /////////////////////////
  virtual ring_elem zeroize_tiny(gmp_RR epsilon, const ring_elem f) const;
  virtual void increase_maxnorm(gmp_RRmutable norm, const ring_elem f) const;
  // If any real number appearing in f has larger absolute value than norm,
  // replace norm.

 public:
  virtual vec vec_lead_term(int nparts, const FreeModule *F, vec v) const;

  virtual vec vec_top_coefficient(const vec v, int &var, int &exp) const;

  const vecterm *vec_locate_lead_term(const FreeModule *F, vec v) const;
  // Returns a pointer to the lead vector of v.
  // This works if F has a Schreyer order, or an up/down order.

 protected:
  vec vec_coefficient_of_var(vec v, int var, int exp) const;

  ring_elem diff_term(const int *m,
                      const int *n,
                      int *resultmon,
                      int use_coeff) const;
  ring_elem power_direct(const ring_elem f, int n) const;

  ring_elem get_logical_coeff(const Ring *coeffR, const Nterm *&f) const;
  // Given an Nterm f, return the coeff of its logical monomial, in the
  // polynomial ring coeffR.  f is modified, in that it is replaced by
  // the pointer to the first term of f not used (possibly 0).

 public:
  virtual void monomial_divisor(const ring_elem a, int *exp) const; // not used

  virtual ring_elem diff(ring_elem a, ring_elem b, int use_coeff) const;
  virtual bool in_subring(int nslots, const ring_elem a) const;
  virtual void degree_of_var(int n, const ring_elem a, int &lo, int &hi) const;
  virtual ring_elem divide_by_var(int n, int d, const ring_elem a) const;
  virtual ring_elem divide_by_expvector(const int *exp,
                                        const ring_elem a) const;

  virtual void lower_content(ring_elem &cont, ring_elem new_coeff) const;
  virtual ring_elem content(ring_elem f) const;
  virtual ring_elem content(ring_elem f, ring_elem g) const;
  virtual ring_elem divide_by_given_content(ring_elem f, ring_elem c) const;

  // Routines special to polynomial rings
  // possibly others?
  // Rideal, exterior_vars.
  // nbits
  // heap merge of elements...?

  // Routines special to fields (anything else?)
 protected:
  Nterm *new_term() const;
  Nterm *copy_term(const Nterm *t) const;

  bool imp_attempt_to_cancel_lead_term(ring_elem &f,
                                       ring_elem g,
                                       ring_elem &coeff,
                                       int *monom) const;

 protected:
  ring_elem imp_skew_mult_by_term(const ring_elem f,
                                  const ring_elem c,
                                  const int *m) const;
  void imp_subtract_multiple_to(ring_elem &f,
                                ring_elem a,
                                const int *m,
                                const ring_elem g) const;

 public:
  void sort(Nterm *&f) const;

  ///////////////////////////////////////////////////////
  // Used in gbvector <--> vector/ringelem translation //
  ///////////////////////////////////////////////////////
  // These are only meant to be called by Ring's.
 public:
  void determine_common_denominator_QQ(ring_elem f, mpz_ptr denom_so_far) const;

  ring_elem get_denominator_QQ(ring_elem f) const;

  ring_elem vec_get_denominator_QQ(vec f) const;

  gbvector *translate_gbvector_from_vec_QQ(const FreeModule *F,
                                           const vec v,
                                           ring_elem &result_denominator) const;

  vec translate_gbvector_to_vec_QQ(const FreeModule *F,
                                   const gbvector *v,
                                   const ring_elem denom) const;

  gbvector *translate_gbvector_from_ringelem_QQ(ring_elem coeff) const;

  gbvector *translate_gbvector_from_ringelem(ring_elem coeff) const;

  gbvector *translate_gbvector_from_vec(const FreeModule *F,
                                        const vec v,
                                        ring_elem &result_denominator) const;

  vec translate_gbvector_to_vec(const FreeModule *F, const gbvector *v) const;

  vec translate_gbvector_to_vec_denom(const FreeModule *F,
                                      const gbvector *v,
                                      const ring_elem denom) const;
  // Translate v/denom to a vector in F.  denom does not need to be positive,
  // although it had better be non-zero.
};

// Returns a PolyRing iff R = ZZ/p[x], for some variable x, and some prime p.
// Otherwise returns null.
const PolyRing * /* or null */ isUnivariateOverPrimeField(const Ring *R);

#endif

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: