| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 
 | // Copyright 1995 Michael E. Stillman
#ifndef _poly_hpp_
#define _poly_hpp_
#include "ring.hpp"
#include "ringelem.hpp"
#include "skew.hpp"
///// Ring Hierarchy ///////////////////////////////////
class TermIdeal;
class Matrix;
class GBRing;
class GBRingSkew;
class GBComputation;
class ChineseRemainder;
#include "polyring.hpp"
class PolyRing : public PolyRingFlat
{
  friend class GBRingSkew;
  friend class FreeModule;
  friend class ChineseRemainder;
  friend class MatrixStream;  // for new_term()
  void initialize_poly_ring(const Ring *K,
                            const Monoid *M,
                            const PolynomialRing *deg_ring);
  // Only to be called from initialize_poly_ring and make_trivial_ZZ_poly_ring
 protected:
  void initialize_poly_ring(const Ring *K, const Monoid *M);
  // Called by subclasses (e.g. skew comm, Weyl, solvable.
  // After this, set the information for the special multiplication.
  // Then set the gb_ring
  virtual ~PolyRing();
  PolyRing() {}
  static PolyRing *trivial_poly_ring;
  static void make_trivial_ZZ_poly_ring();
 public:
  static const PolyRing *create(const Ring *K, const Monoid *M);
 public:
  virtual void clear();
  static const PolyRing *get_trivial_poly_ring();
  virtual const PolyRing *cast_to_PolyRing() const { return this; }
  virtual PolyRing *cast_to_PolyRing() { return this; }
  virtual void text_out(buffer &o) const;
  /////////////////////////
  // Arithmetic ///////////
  /////////////////////////
  ring_elem fromCoefficient(ring_elem &coeff) const;
  virtual ring_elem from_long(long n) const;
  virtual ring_elem from_int(mpz_srcptr n) const;
  virtual bool from_rational(mpq_srcptr q, ring_elem &result) const;
  virtual bool from_BigComplex(gmp_CC z, ring_elem &result) const;
  virtual bool from_BigReal(gmp_RR z, ring_elem &result) const;
  virtual bool from_Interval(gmp_RRi z, ring_elem &result) const;
  virtual bool from_double(double a, ring_elem &result) const;
  virtual bool from_complex_double(double re,
                                   double im,
                                   ring_elem &result) const;
  virtual ring_elem var(int v) const;
  virtual int index_of_var(const ring_elem a) const;
  virtual M2_arrayint support(const ring_elem a) const;
  virtual bool promote(const Ring *R,
                       const ring_elem f,
                       ring_elem &result) const;
  virtual bool lift(const Ring *R, const ring_elem f, ring_elem &result) const;
  virtual ring_elem preferred_associate(ring_elem f) const;
  ring_elem preferred_associate_divisor(ring_elem ff) const;
  // ff is an element of 'this'.
  // result is in the coefficient ring
  // If the coefficient ring of this is
  //   ZZ -- gcd of all, same sign as lead coeff
  //   QQ -- gcd(numerators)/lcm(denominators)
  //   basic field -- lead coeff
  //   frac(poly ring) -- gcd(numerators)/lcm(denominators)
  //   frac(quotient of a poly ring) -- error
  virtual bool is_unit(const ring_elem f) const;
  virtual bool is_zero(const ring_elem f) const;
  virtual bool is_equal(const ring_elem f, const ring_elem g) const;
  virtual int compare_elems(const ring_elem f, const ring_elem g) const;
  virtual bool is_homogeneous(const ring_elem f) const;
  virtual void degree(const ring_elem f, int *d) const;
  virtual bool multi_degree(const ring_elem f, int *d) const;
  virtual void degree_weights(const ring_elem f,
                              M2_arrayint wts,
                              int &lo,
                              int &hi) const;
  virtual ring_elem homogenize(const ring_elem f,
                               int v,
                               int deg,
                               M2_arrayint wts) const;
  virtual ring_elem homogenize(const ring_elem f, int v, M2_arrayint wts) const;
  virtual ring_elem copy(const ring_elem f) const;
  virtual void remove(ring_elem &f) const;
  void internal_negate_to(ring_elem &f) const;
  void internal_add_to(ring_elem &f, ring_elem &g) const;
  void internal_subtract_to(ring_elem &f, ring_elem &g) const;
  virtual ring_elem negate(const ring_elem f) const;
  virtual ring_elem add(const ring_elem f, const ring_elem g) const;
  virtual ring_elem subtract(const ring_elem f, const ring_elem g) const;
  virtual ring_elem mult(const ring_elem f, const ring_elem g) const;
  virtual ring_elem power(const ring_elem f, mpz_srcptr n) const;
  virtual ring_elem power(const ring_elem f, int n) const;
  virtual ring_elem invert(const ring_elem f) const;
  virtual ring_elem divide(const ring_elem f, const ring_elem g) const;
  ring_elem gcd(const ring_elem f, const ring_elem g) const;
  ring_elem gcd_extended(const ring_elem f,
                         const ring_elem g,
                         ring_elem &u,
                         ring_elem &v) const;
 protected:
  void minimal_monomial(ring_elem f, int *&monom) const;
  Nterm *division_algorithm(Nterm *f, Nterm *g, Nterm *") const;
  Nterm *division_algorithm(Nterm *f, Nterm *g) const;
  Nterm *powerseries_division_algorithm(Nterm *f, Nterm *g, Nterm *") const;
  std::vector<int> setNegativeExponentMonomial(Nterm* f) const;
  Nterm *division_algorithm_with_laurent_variables(Nterm *f, Nterm *g, Nterm *") const;
 public:
  virtual ring_elem remainder(const ring_elem f, const ring_elem g) const;
  virtual ring_elem quotient(const ring_elem f, const ring_elem g) const;
  virtual ring_elem remainderAndQuotient(const ring_elem f,
                                         const ring_elem g,
                                         ring_elem ") const;
  virtual void syzygy(const ring_elem a,
                      const ring_elem b,
                      ring_elem &x,
                      ring_elem &y) const;
  virtual ring_elem random() const;
  virtual void elem_text_out(buffer &o,
                             const ring_elem f,
                             bool p_one = true,
                             bool p_plus = false,
                             bool p_parens = false) const;
  virtual ring_elem eval(const RingMap *map,
                         const ring_elem f,
                         int first_var) const;
  virtual ring_elem mult_by_term(const ring_elem f,
                                 const ring_elem c,
                                 const int *m) const;
  virtual int n_flat_terms(const ring_elem f) const;
  virtual int n_logical_terms(int nvars0, const ring_elem f) const;
  virtual ring_elem get_coeff(const Ring *coeffR,
                              const ring_elem f,
                              const int *vp) const;
  virtual ring_elem get_terms(int nvars0,
                              const ring_elem f,
                              int lo,
                              int hi) const;
  virtual ring_elem make_flat_term(const ring_elem a, const int *m) const;
  virtual ring_elem make_logical_term(const Ring *coeffR,
                                      const ring_elem a,
                                      const int *exp) const;
  virtual ring_elem lead_flat_coeff(const ring_elem f) const;
  virtual ring_elem lead_logical_coeff(const Ring *coeffR,
                                       const ring_elem f) const;
  virtual const int *lead_flat_monomial(const ring_elem f) const;
  virtual void lead_logical_exponents(int nvars0,
                                      const ring_elem f,
                                      int *result_exp) const;
  ring_elem lead_term(const ring_elem f) const;  // copies the lead term
  virtual engine_RawArrayPairOrNull list_form(const Ring *coeffR,
                                              const ring_elem f) const;
  virtual ring_elem *get_parts(const M2_arrayint wts,
                               const ring_elem f,
                               long &result_len) const;
  virtual ring_elem get_part(const M2_arrayint wts,
                             const ring_elem f,
                             bool lobound_given,
                             bool hibound_given,
                             long lobound,
                             long hibound) const;
  virtual void mult_coeff_to(ring_elem a, ring_elem &f) const;
  virtual void divide_coeff_to(ring_elem &f, ring_elem a) const;
  virtual ring_elem lead_term(int nparts, const ring_elem f) const;
 public:
  ///////////////////////////////////////
  // Univariate polynomial translation //
  ///////////////////////////////////////
  ring_elem fromSmallIntegerCoefficients(const std::vector<long> &coeffs,
                                         int var) const;
 public:
  /////////////////////////
  // RRR and CCC support //
  /////////////////////////
  virtual ring_elem zeroize_tiny(gmp_RR epsilon, const ring_elem f) const;
  virtual void increase_maxnorm(gmp_RRmutable norm, const ring_elem f) const;
  // If any real number appearing in f has larger absolute value than norm,
  // replace norm.
 public:
  virtual vec vec_lead_term(int nparts, const FreeModule *F, vec v) const;
  virtual vec vec_top_coefficient(const vec v, int &var, int &exp) const;
  const vecterm *vec_locate_lead_term(const FreeModule *F, vec v) const;
  // Returns a pointer to the lead vector of v.
  // This works if F has a Schreyer order, or an up/down order.
 protected:
  vec vec_coefficient_of_var(vec v, int var, int exp) const;
  ring_elem diff_term(const int *m,
                      const int *n,
                      int *resultmon,
                      int use_coeff) const;
  ring_elem power_direct(const ring_elem f, int n) const;
  ring_elem get_logical_coeff(const Ring *coeffR, const Nterm *&f) const;
  // Given an Nterm f, return the coeff of its logical monomial, in the
  // polynomial ring coeffR.  f is modified, in that it is replaced by
  // the pointer to the first term of f not used (possibly 0).
 public:
  virtual void monomial_divisor(const ring_elem a, int *exp) const; // not used
  virtual ring_elem diff(ring_elem a, ring_elem b, int use_coeff) const;
  virtual bool in_subring(int nslots, const ring_elem a) const;
  virtual void degree_of_var(int n, const ring_elem a, int &lo, int &hi) const;
  virtual ring_elem divide_by_var(int n, int d, const ring_elem a) const;
  virtual ring_elem divide_by_expvector(const int *exp,
                                        const ring_elem a) const;
  virtual void lower_content(ring_elem &cont, ring_elem new_coeff) const;
  virtual ring_elem content(ring_elem f) const;
  virtual ring_elem content(ring_elem f, ring_elem g) const;
  virtual ring_elem divide_by_given_content(ring_elem f, ring_elem c) const;
  // Routines special to polynomial rings
  // possibly others?
  // Rideal, exterior_vars.
  // nbits
  // heap merge of elements...?
  // Routines special to fields (anything else?)
 protected:
  Nterm *new_term() const;
  Nterm *copy_term(const Nterm *t) const;
  bool imp_attempt_to_cancel_lead_term(ring_elem &f,
                                       ring_elem g,
                                       ring_elem &coeff,
                                       int *monom) const;
 protected:
  ring_elem imp_skew_mult_by_term(const ring_elem f,
                                  const ring_elem c,
                                  const int *m) const;
  void imp_subtract_multiple_to(ring_elem &f,
                                ring_elem a,
                                const int *m,
                                const ring_elem g) const;
 public:
  void sort(Nterm *&f) const;
  ///////////////////////////////////////////////////////
  // Used in gbvector <--> vector/ringelem translation //
  ///////////////////////////////////////////////////////
  // These are only meant to be called by Ring's.
 public:
  void determine_common_denominator_QQ(ring_elem f, mpz_ptr denom_so_far) const;
  ring_elem get_denominator_QQ(ring_elem f) const;
  ring_elem vec_get_denominator_QQ(vec f) const;
  gbvector *translate_gbvector_from_vec_QQ(const FreeModule *F,
                                           const vec v,
                                           ring_elem &result_denominator) const;
  vec translate_gbvector_to_vec_QQ(const FreeModule *F,
                                   const gbvector *v,
                                   const ring_elem denom) const;
  gbvector *translate_gbvector_from_ringelem_QQ(ring_elem coeff) const;
  gbvector *translate_gbvector_from_ringelem(ring_elem coeff) const;
  gbvector *translate_gbvector_from_vec(const FreeModule *F,
                                        const vec v,
                                        ring_elem &result_denominator) const;
  vec translate_gbvector_to_vec(const FreeModule *F, const gbvector *v) const;
  vec translate_gbvector_to_vec_denom(const FreeModule *F,
                                      const gbvector *v,
                                      const ring_elem denom) const;
  // Translate v/denom to a vector in F.  denom does not need to be positive,
  // although it had better be non-zero.
};
// Returns a PolyRing iff R = ZZ/p[x], for some variable x, and some prime p.
// Otherwise returns null.
const PolyRing * /* or null */ isUnivariateOverPrimeField(const Ring *R);
#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
 |