1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
#include "util.hpp"
#include "polyring.hpp"
#include "ring.hpp"
#include "monoid.hpp"
#include "qring.hpp"
#include "polyquotient.hpp"
#include "matrix.hpp"
#include "matrix-con.hpp"
#include "geopoly.hpp"
PolynomialRing::~PolynomialRing() {}
void PolynomialRing::setQuotientInfo(QRingInfo *qinfo0)
{
qinfo_ = qinfo0;
const PolyRing *numerR = getNumeratorRing(); // might be 'this'
for (int i = 0; i < n_quotients(); i++)
{
if (!numerR->is_homogeneous(quotient_element(i)))
{
setIsGraded(false);
break;
}
}
overZZ_ = (coeff_type_ == Ring::COEFF_ZZ);
}
void PolynomialRing::initialize_PolynomialRing(const Ring *K,
const Monoid *M,
const PolyRing *numeratorR,
const PolynomialRing *ambientR,
const Ring *denomR)
{
nvars_ = M->n_vars();
K_ = K;
M_ = M;
numerR_ = numeratorR;
ambientR_ = ambientR;
denomR_ = denomR;
exp_size = EXPONENT_BYTE_SIZE(nvars_);
if (K->is_QQ() || (K == globalZZ && denomR != 0))
coeff_type_ = Ring::COEFF_QQ;
else if (K == globalZZ && denomR == 0)
coeff_type_ = Ring::COEFF_ZZ;
else
coeff_type_ = Ring::COEFF_BASIC;
is_weyl_ = false;
is_solvable_ = false;
is_skew_ = false;
overZZ_ = false;
qinfo_ = new QRingInfo;
is_ZZ_quotient_ = false;
ZZ_quotient_value_ = ZERO_RINGELEM;
if (numeratorR != this)
{
// We must set the non-commutative settings ourselves at this time
if (numeratorR->cast_to_WeylAlgebra() != 0)
is_weyl_ = true;
else if (numeratorR->cast_to_SolvableAlgebra() != 0)
is_solvable_ = true;
else if (numeratorR->is_skew_commutative())
{
is_skew_ = true;
skew_ = numeratorR->getSkewInfo();
}
}
poly_size_ = 0; // The callee needs to set this later
gb_ring_ = 0; // The callee needs to set this later
// Also: callee should call setIsGraded, and set oneV, minus_oneV, zeroV
}
PolynomialRing *PolynomialRing::create_quotient(const PolynomialRing *R,
VECTOR(Nterm *) & elems)
// Grabs 'elems'. Each element of 'elems' should be in the ring R.
// They should also form a GB.
{
// Here are the cases:
// (1) R is a polynomial ring over a basic field
// (2) R is a polynomial ring over ZZ
// (3) R is a polynomial ring over QQ
// case (1), (2): PolyRingQuotient
// case (3): PolyQQ
PolynomialRing *result = NULL;
Ring::CoefficientType coeff_type = R->coefficient_type();
QRingInfo *qrinfo = NULL;
switch (coeff_type)
{
case COEFF_BASIC:
qrinfo = new QRingInfo_field_basic(R->getNumeratorRing(), elems);
result = new PolyRingQuotient;
break;
case COEFF_QQ:
qrinfo = new QRingInfo_field_QQ(R->getNumeratorRing(), elems);
result = new PolyRingQuotient;
break;
case COEFF_ZZ:
QRingInfo_ZZ *qrinfoZZ = new QRingInfo_ZZ(R->getNumeratorRing(), elems);
qrinfo = qrinfoZZ;
result = new PolyRingQuotient;
result->is_ZZ_quotient_ = qrinfoZZ->is_ZZ_quotient();
result->ZZ_quotient_value_ = qrinfoZZ->ZZ_quotient_value();
break;
}
result->initialize_ring(
R->characteristic(), R->get_degree_ring(), R->get_heft_vector());
result->initialize_PolynomialRing(R->getCoefficients(),
R->getMonoid(),
R->getNumeratorRing(),
R->getAmbientRing(),
R->getDenominatorRing());
result->gb_ring_ = R->get_gb_ring();
result->setQuotientInfo(qrinfo); // Also sets graded-ness
result->zeroV = result->from_long(0);
result->oneV = result->from_long(1);
result->minus_oneV = result->from_long(-1);
return result;
}
PolynomialRing *PolynomialRing::create_quotient(const PolynomialRing *R,
const Matrix *M)
{
if (M->get_ring() != R)
{
ERROR("quotient elements not in the expected polynomial ring");
return 0;
}
VECTOR(Nterm *) elems;
for (int i = 0; i < M->n_cols(); i++)
{
Nterm *f = R->numerator(M->elem(0, i));
elems.push_back(f);
}
for (int i = 0; i < R->n_quotients(); i++)
elems.push_back(R->quotient_element(i));
return create_quotient(R->getAmbientRing(), elems);
}
PolynomialRing *PolynomialRing::create_quotient(const PolynomialRing *R,
const PolynomialRing *B)
// R should be an ambient poly ring
// B should have: ambient of B is the logical coeff ring of R
// i.e. R = A[x], B = A/I
// return A[x]/I.
{
VECTOR(Nterm *) elems;
for (int i = 0; i < B->n_quotients(); i++)
{
ring_elem f;
R->promote(B->getNumeratorRing(), B->quotient_element(i), f);
elems.push_back(f);
}
return create_quotient(R, elems);
}
Matrix *PolynomialRing::getPresentation() const
{
const PolynomialRing *R = getAmbientRing();
MatrixConstructor mat(R->make_FreeModule(1), 0);
for (int i = 0; i < n_quotients(); i++)
// NEED: to make this into a fraction, if R has fractions.
mat.append(R->make_vec(0, quotient_element(i)));
return mat.to_matrix();
}
class SumCollectorPolyHeap : public SumCollector
{
polyheap H;
public:
SumCollectorPolyHeap(const PolynomialRing *R0) : H(R0) {}
~SumCollectorPolyHeap() {}
virtual void add(ring_elem f) { H.add(f); }
virtual ring_elem getValue() { return H.value(); }
};
SumCollector *PolynomialRing::make_SumCollector() const
{
return new SumCollectorPolyHeap(this);
}
unsigned int PolynomialRing::computeHashValue(const ring_elem a) const
{
unsigned int hash = 0;
unsigned int seed1 = 103;
unsigned int seed2 = 347654;
for (const Nterm *t = a.poly_val; t != 0; t = t->next)
{
unsigned int hash1 = getCoefficientRing()->computeHashValue(t->coeff);
unsigned int hash2 = getMonoid()->computeHashValue(t->monom);
hash += seed1 * hash1 + seed2 * hash2;
seed1 += 463633;
seed2 += 7858565;
}
return hash;
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|