1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// Copyright 2005, Michael E. Stillman
#include "reducedgb-field.hpp"
#include "monideal.hpp"
#include <functional>
#include <algorithm>
ReducedGB_Field::~ReducedGB_Field()
{
delete T;
Rideal = 0;
}
void ReducedGB_Field::set_gb(VECTOR(POLY) & polys0) {}
struct ReducedGB_Field_sorter : public std::binary_function<int, int, bool>
{
GBRing *R;
const FreeModule *F;
const VECTOR(POLY) & gb;
ReducedGB_Field_sorter(GBRing *R0,
const FreeModule *F0,
const VECTOR(POLY) & gb0)
: R(R0), F(F0), gb(gb0)
{
}
bool operator()(int xx, int yy)
{
gbvector *x = gb[xx].f;
gbvector *y = gb[yy].f;
return R->gbvector_compare(F, x, y) == LT;
}
};
ReducedGB_Field::ReducedGB_Field(GBRing *R0,
const PolynomialRing *originalR0,
const FreeModule *F0,
const FreeModule *Fsyz0)
: ReducedGB(R0, originalR0, F0, Fsyz0), T(nullptr), Rideal(nullptr)
{
T = MonomialTable::make(R0->n_vars());
if (originalR->is_quotient_ring())
Rideal = originalR->get_quotient_monomials();
}
void ReducedGB_Field::minimalize(const VECTOR(POLY) & polys0, bool auto_reduced)
// I have to decide: does this ADD to the existing set?
{
// First sort these elements via increasing lex order (or monomial order?)
// Next insert minimal elements into T, and polys
VECTOR(int) positions;
positions.reserve(polys0.size());
for (int i = 0; i < polys0.size(); i++) positions.push_back(i);
// displayElements("-- before sort --", R, polys0, [](auto& g) { return g.f;
// } );
std::stable_sort(
positions.begin(), positions.end(), ReducedGB_Field_sorter(R, F, polys0));
// VECTOR(gbvector*) sorted_elements_debug_only;
// for (int i=0; i<positions.size(); i++)
// sorted_elements_debug_only.push_back(polys0[positions[i]].f);
// displayElements("-- after sort --", R, sorted_elements_debug_only,
// [](auto& g) { return g; } );
// Now loop through each element, and see if the lead monomial is in T.
// If not, add it in , and place element into 'polys'.
for (VECTOR(int)::iterator i = positions.begin(); i != positions.end(); i++)
{
Bag *not_used;
gbvector *f = polys0[*i].f;
exponents e = R->exponents_make();
R->gbvector_get_lead_exponents(F, f, e);
if ((!Rideal || !Rideal->search_expvector(e, not_used)) &&
T->find_divisors(1, e, f->comp) == 0)
{
// Keep this element
POLY h;
ring_elem junk;
h.f = R->gbvector_copy(f);
h.fsyz = R->gbvector_copy(polys0[*i].fsyz);
if (auto_reduced) remainder(h, false, junk); // This auto-reduces h.
R->gbvector_remove_content(h.f, h.fsyz);
T->insert(e, f->comp, INTSIZE(polys));
polys.push_back(h);
}
else
R->exponents_delete(e);
}
}
void ReducedGB_Field::remainder(POLY &f, bool use_denom, ring_elem &denom)
{
gbvector head;
gbvector *frem = &head;
frem->next = 0;
POLY h = f;
exponents EXP = ALLOCATE_EXPONENTS(R->exponent_byte_size());
while (!R->gbvector_is_zero(h.f))
{
R->gbvector_get_lead_exponents(F, h.f, EXP);
int x = h.f->comp;
Bag *b;
if (Rideal != 0 && Rideal->search_expvector(EXP, b))
{
const gbvector *g = originalR->quotient_gbvector(b->basis_elem());
R->gbvector_reduce_lead_term(
F, Fsyz, head.next, h.f, h.fsyz, g, 0, use_denom, denom);
}
else
{
int w = T->find_divisor(EXP, x);
if (w >= 0)
{
POLY g = polys[w];
R->gbvector_reduce_lead_term(F,
Fsyz,
head.next,
h.f,
h.fsyz,
g.f,
g.fsyz,
use_denom,
denom);
}
else
{
frem->next = h.f;
frem = frem->next;
h.f = h.f->next;
frem->next = 0;
}
}
}
h.f = head.next;
// R->gbvector_remove_content(h.f, h.fsyz, use_denom, denom);
f.f = h.f;
originalR->get_quotient_info()->gbvector_normal_form(
Fsyz, h.fsyz, use_denom, denom);
f.fsyz = h.fsyz;
}
void ReducedGB_Field::remainder(gbvector *&f, bool use_denom, ring_elem &denom)
{
gbvector *zero = 0;
gbvector head;
gbvector *frem = &head;
frem->next = 0;
gbvector *h = f;
exponents EXP = ALLOCATE_EXPONENTS(R->exponent_byte_size());
while (!R->gbvector_is_zero(h))
{
R->gbvector_get_lead_exponents(F, h, EXP);
int x = h->comp;
Bag *b;
if (Rideal != 0 && Rideal->search_expvector(EXP, b))
{
const gbvector *g = originalR->quotient_gbvector(b->basis_elem());
R->gbvector_reduce_lead_term(
F, Fsyz, head.next, h, zero, g, zero, use_denom, denom);
}
else
{
int w = T->find_divisor(EXP, x);
if (w < 0)
{
frem->next = h;
frem = frem->next;
h = h->next;
frem->next = 0;
}
else
{
POLY g = polys[w];
R->gbvector_reduce_lead_term(
F, Fsyz, head.next, h, zero, g.f, zero, use_denom, denom);
}
}
}
h = head.next;
// R->gbvector_remove_content(h, 0, use_denom, denom);
f = h;
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|