File: reducedgb-marked.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (275 lines) | stat: -rw-r--r-- 7,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2005, Michael E. Stillman

#include <functional>
#include "reducedgb-marked.hpp"
#include "monideal.hpp"
#include "matrix-con.hpp"

MarkedGB *MarkedGB::create(const PolynomialRing *originalR0,
                           const FreeModule *F0,
                           const FreeModule *Fsyz0)
{
  return new MarkedGB(originalR0, F0, Fsyz0);
}

MarkedGB::~MarkedGB()
{
  delete T;
  freemem(leadterms);
}

void MarkedGB::set_gb(VECTOR(POLY) & polys0) {}

struct MarkedGB_sorter : public std::binary_function<int, int, bool>
{
  GBRing *R;
  const FreeModule *F;
  const VECTOR(POLY) & gb;
  MarkedGB_sorter(GBRing *R0, const FreeModule *F0, const VECTOR(POLY) & gb0)
      : R(R0), F(F0), gb(gb0)
  {
  }
  bool operator()(int xx, int yy)
  {
    gbvector *x = gb[xx].f;
    gbvector *y = gb[yy].f;
    return R->gbvector_compare(F, x, y) == LT;
  }
};

MarkedGB::MarkedGB(const PolynomialRing *originalR0,
                   const FreeModule *F0,
                   const FreeModule *Fsyz0)
    : ReducedGB(originalR0->get_gb_ring(), originalR0, F0, Fsyz0), T(0)
{
  T = MonomialTable::make(R->n_vars());
}

void MarkedGB::add_marked_elems(const VECTOR(gbvector *) & leadterms0,
                                const VECTOR(POLY) & polys0,
                                bool auto_reduced)
{
  // First sort these elements via increasing lex order (or monomial order?)
  // Next insert minimal elements into T, and polys
  const Monoid *M = originalR->getMonoid();

  leadterms = newarray(gbvector *, leadterms0.size());

  // Now loop through each element, and see if the lead monomial is in T.
  // If not, add it in , and place element into 'polys'.

  for (int i = 0; i < leadterms0.size(); i++)
    {
      POLY h;
      ring_elem junk;

      gbvector *f = polys0[i].f;
      gbvector *inf = leadterms0[i];

      h.f = R->gbvector_copy(f);
      h.fsyz = R->gbvector_copy(polys0[i].fsyz);

      gbvector *iinf = 0;
      for (gbvector *t = h.f; t != 0; t = t->next)
        if (inf->comp == t->comp && EQ == M->compare(inf->monom, t->monom))
          {
            iinf = t;
            break;
          }
      if (!iinf)
        {
          ERROR("lead term does not appear in the polynomial!");
          iinf = f;
        }
      leadterms[i] = iinf;

      exponents e = R->exponents_make();
      R->gbvector_get_lead_exponents(F, iinf, e);

      //      if (auto_reduced)
      //        remainder(h,false,junk); // This auto-reduces h. MES MES!! Maybe
      //        not for marked GB!!

      R->gbvector_remove_content(h.f, h.fsyz);

      T->insert(e, iinf->comp, i);
      polys.push_back(h);
    }

  auto_reduce();
}

void MarkedGB::auto_reduce()
{
  // For each element, reduce all terms which are not
  // the marked lead term
  ring_elem not_used;

  for (int i = 0; i < polys.size(); i++)
    marked_remainder(polys[i], false, not_used, leadterms[i]);
}

void MarkedGB::marked_remainder(POLY &f,
                                bool use_denom,
                                ring_elem &denom,
                                gbvector *marked_lead_term)
// If marked_lead_term is not NULL, then it should be a pointer
// to a term in f.f.  This term will not be reduced, and the new lead term will
// replace this one.
// (This could happen if the coefficient changes).
{
  gbvector head;
  gbvector *frem = &head;
  frem->next = 0;
  POLY h = f;
  exponents EXP = ALLOCATE_EXPONENTS(R->exponent_byte_size());

  while (!R->gbvector_is_zero(h.f))
    {
      if (h.f != marked_lead_term)
        {
          R->gbvector_get_lead_exponents(F, h.f, EXP);
          int x = h.f->comp;
          int w = T->find_divisor(EXP, x);
          if (w >= 0)
            {
              POLY g = polys[w];
              R->gbvector_reduce_with_marked_lead_term(F,
                                                       Fsyz,
                                                       head.next,
                                                       h.f,
                                                       h.fsyz,
                                                       leadterms[w],
                                                       g.f,
                                                       g.fsyz,
                                                       use_denom,
                                                       denom);
              continue;
            }
        }
      frem->next = h.f;
      frem = frem->next;
      h.f = h.f->next;
      frem->next = 0;
    }

  h.f = head.next;
  f.f = h.f;
  f.fsyz = h.fsyz;
  R->gbvector_sort(F, f.f);
  R->gbvector_sort(Fsyz, f.fsyz);
}

void MarkedGB::remainder(POLY &f, bool use_denom, ring_elem &denom)
{
  marked_remainder(f, use_denom, denom, NULL);
}

void MarkedGB::remainder(gbvector *&f, bool use_denom, ring_elem &denom)
{
  //  return geo_remainder(f,use_denom,denom);
  gbvector *zero = 0;
  gbvector head;
  gbvector *frem = &head;
  frem->next = 0;
  gbvector *h = f;
  exponents EXP = ALLOCATE_EXPONENTS(R->exponent_byte_size());

  while (!R->gbvector_is_zero(h))
    {
      R->gbvector_get_lead_exponents(F, h, EXP);
      int x = h->comp;
      int w = T->find_divisor(EXP, x);
      if (w < 0)
        {
          frem->next = h;
          frem = frem->next;
          h = h->next;
          frem->next = 0;
        }
      else
        {
          POLY g = polys[w];
          R->gbvector_reduce_with_marked_lead_term(F,
                                                   Fsyz,
                                                   head.next,
                                                   h,
                                                   zero,
                                                   leadterms[w],
                                                   g.f,
                                                   zero,
                                                   use_denom,
                                                   denom);
        }
    }
  h = head.next;
  f = h;
  R->gbvector_sort(F, f);
}

void MarkedGB::geo_remainder(gbvector *&f, bool use_denom, ring_elem &denom)
{
  gbvector head;
  gbvector *frem = &head;
  frem->next = 0;

  gbvectorHeap fb(R, F);
  gbvectorHeap zero(R, Fsyz);
  fb.add(f);

  const gbvector *lead;
  exponents EXP = ALLOCATE_EXPONENTS(R->exponent_byte_size());
  while ((lead = fb.get_lead_term()) != NULL)
    {
      R->gbvector_get_lead_exponents(F, lead, EXP);
      int x = lead->comp;
      int w = T->find_divisor(EXP, x);
      if (w < 0)
        {
          frem->next = fb.remove_lead_term();
          frem = frem->next;
          frem->next = 0;
        }
      else
        {
          POLY g = polys[w];
          R->reduce_marked_lead_term_heap(
              F, Fsyz, lead, EXP, head.next, fb, zero, leadterms[w], g.f, 0);
        }
    }
  f = head.next;
  R->gbvector_sort(F, f);
}

const Matrix /* or null */ *MarkedGB::get_initial(int nparts)
{
  if (nparts > 0)
    {
      ERROR("Cannot determine given initial monomials");
      return 0;
    }
  MatrixConstructor mat(F, 0);
  for (int i = 0; i < polys.size(); i++)
    {
      gbvector *f = R->gbvector_lead_term(-1, F, leadterms[i]);
      mat.append(originalR->translate_gbvector_to_vec(F, f));
    }
  return mat.to_matrix();
}

const Matrix /* or null */ *MarkedGB::get_parallel_lead_terms(M2_arrayint w)
{
  MatrixConstructor mat(F, 0);
  for (int i = 0; i < polys.size(); i++)
    {
      gbvector *f =
          R->gbvector_parallel_lead_terms(w, F, leadterms[i], polys[i].f);
      mat.append(originalR->translate_gbvector_to_vec(F, f));
    }
  return mat.to_matrix();
}

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: