File: reducedgb.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (236 lines) | stat: -rw-r--r-- 6,092 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include "reducedgb.hpp"

#include "matrix-con.hpp"
#include "polyring.hpp"
#include "matrix.hpp"

#include "reducedgb-field.hpp"
#include "reducedgb-field-local.hpp"
#include "reducedgb-ZZ.hpp"

ReducedGB *ReducedGB::create(
    const PolynomialRing *originalR0,
    const FreeModule *F0,
    const FreeModule *Fsyz0,
    const GBWeight *wt0)  // better be 0 or set with same F0
{
  // Depending on whether the ring is over a field, or over ZZ, or
  // has local variables, we create a different class.

  bool over_ZZ = originalR0->coefficient_type() == Ring::COEFF_ZZ;
  M2_arrayint local_vars = originalR0->getMonoid()->getNonTermOrderVariables();
  bool is_local = (local_vars && local_vars->len > 0);
  GBRing *R = originalR0->get_gb_ring();

  if (over_ZZ)
    return new ReducedGB_ZZ(R, originalR0, F0, Fsyz0);
  else
    {
      if (is_local)
        return new ReducedGB_Field_Local(R, originalR0, F0, Fsyz0, wt0);
      else
        return new ReducedGB_Field(R, originalR0, F0, Fsyz0);
    }
}

ReducedGB::ReducedGB(GBRing *R0,
                     const PolynomialRing *originalR0,
                     const FreeModule *F0,
                     const FreeModule *Fsyz0)
    : R(R0), originalR(originalR0), F(F0), Fsyz(Fsyz0)
{
  set_status(COMP_DONE);
}

ReducedGB::~ReducedGB()
{
  for (int i = 0; i < polys.size(); i++)
    {
      R->gbvector_remove(polys[i].f);
      R->gbvector_remove(polys[i].fsyz);
    }
}

const Matrix /* or null */ *ReducedGB::get_gb()
{
  MatrixConstructor mat(F, 0);
  for (VECTOR(POLY)::const_iterator i = polys.begin(); i != polys.end(); i++)
    {
      vec v = originalR->translate_gbvector_to_vec(F, (*i).f);
      mat.append(v);
    }
  return mat.to_matrix();
}

const Matrix /* or null */ *ReducedGB::get_mingens()
{
#ifdef DEVELOPMENT
#warning "mingens?"
#endif
  return 0;
}

const Matrix /* or null */ *ReducedGB::get_syzygies()
{
#ifdef DEVELOPMENT
#warning "syzygies?"
#endif
  return 0;
}

const Matrix /* or null */ *ReducedGB::get_change()
{
  MatrixConstructor mat(Fsyz, 0);
  for (VECTOR(POLY)::const_iterator i = polys.begin(); i != polys.end(); i++)
    {
      vec v = originalR->translate_gbvector_to_vec(Fsyz, (*i).fsyz);
      mat.append(v);
    }
  return mat.to_matrix();
}

const Matrix /* or null */ *ReducedGB::get_initial(int nparts)
{
  MatrixConstructor mat(F, 0);
  for (VECTOR(POLY)::const_iterator i = polys.begin(); i != polys.end(); i++)
    {
      gbvector *f = R->gbvector_lead_term(nparts, F, (*i).f);
      mat.append(originalR->translate_gbvector_to_vec(F, f));
      R->gbvector_remove(f);
    }
  return mat.to_matrix();
}

const Matrix /* or null */ *ReducedGB::get_parallel_lead_terms(M2_arrayint w)
{
  MatrixConstructor mat(F, 0);
  for (int i = 0; i < polys.size(); i++)
    {
      gbvector *f =
          R->gbvector_parallel_lead_terms(w, F, polys[i].f, polys[i].f);
      mat.append(originalR->translate_gbvector_to_vec(F, f));
      R->gbvector_remove(f);
    }
  return mat.to_matrix();
}

void ReducedGB::text_out(buffer &o) const
{
  for (unsigned int i = 0; i < polys.size(); i++)
    {
      o << i << '\t';
      R->gbvector_text_out(o, F, polys[i].f);
      o << newline;
    }
}

const Matrix /* or null */ *ReducedGB::matrix_remainder(const Matrix *m)
{
  if (m->get_ring() != originalR)
    {
      ERROR("expected matrix over the same ring");
      return 0;
    }

  if (m->n_rows() != F->rank())
    {
      ERROR("expected matrices to have same number of rows");
      return 0;
    }

  MatrixConstructor red(m->rows(), m->cols(), m->degree_shift());
  for (int i = 0; i < m->n_cols(); i++)
    {
      ring_elem denom;
      gbvector *g = originalR->translate_gbvector_from_vec(F, (*m)[i], denom);

      remainder(g, true, denom);

      vec fv = originalR->translate_gbvector_to_vec_denom(F, g, denom);
      red.set_column(i, fv);
      R->gbvector_remove(g);
    }
  return red.to_matrix();
}

M2_bool ReducedGB::matrix_lift(const Matrix *m,
                               const Matrix /* or null */ **result_remainder,
                               const Matrix /* or null */ **result_quotient)
{
  if (m->get_ring() != originalR)
    {
      ERROR("expected matrix over the same ring");
      *result_remainder = 0;
      *result_quotient = 0;
      return false;
    }
  if (m->n_rows() != F->rank())
    {
      ERROR("expected matrices to have same number of rows");
      *result_remainder = 0;
      *result_quotient = 0;
      return false;
    }

  MatrixConstructor mat_remainder(m->rows(), m->cols(), m->degree_shift());
  MatrixConstructor mat_quotient(Fsyz, m->cols(), 0);

#ifdef DEVELOPMENT
#warning "K should be the denominator ring?"
#endif
  const Ring *K = R->get_flattened_coefficients();
  bool all_zeroes = true;
  for (int i = 0; i < m->n_cols(); i++)
    {
      ring_elem denom;
      POLY g;
      g.f = originalR->translate_gbvector_from_vec(F, (*m)[i], denom);
      g.fsyz = R->gbvector_zero();

      remainder(g, true, denom);
      if (g.f != 0) all_zeroes = false;

      vec fv = originalR->translate_gbvector_to_vec_denom(F, g.f, denom);
      K->negate_to(denom);
      vec fsyzv =
          originalR->translate_gbvector_to_vec_denom(Fsyz, g.fsyz, denom);
      mat_remainder.set_column(i, fv);
      mat_quotient.set_column(i, fsyzv);

      R->gbvector_remove(g.f);
      R->gbvector_remove(g.fsyz);
    }
  *result_remainder = mat_remainder.to_matrix();
  *result_quotient = mat_quotient.to_matrix();
  return all_zeroes;
}

int ReducedGB::contains(const Matrix *m)
{
  // Reduce each column of m one by one.
  if (m->get_ring() != originalR)
    {
      ERROR("expected matrix over the same ring");
      return -2;
    }

  for (int i = 0; i < m->n_cols(); i++)
    {
      ring_elem denom;
      gbvector *g = originalR->translate_gbvector_from_vec(F, (*m)[i], denom);

      remainder(g, false, denom);

      if (g != NULL)
        {
          R->gbvector_remove(g);
          return i;
        }
    }
  return -1;
}

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: