1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
// Copyright 2004 Michael E. Stillman.
#ifndef _reducedgb_hpp_
#define _reducedgb_hpp_
#include "comp-gb.hpp"
#include <vector>
#include "gbring.hpp"
#include "montable.hpp"
#include "montableZZ.hpp"
#include "gbweight.hpp"
#include "polyring.hpp"
/**
@ingroup reducedgb
@brief Base class for reduced Groebner basis computation.
These classes take a Groebner basis, and compute a corresponding minimal
Groebner basis.
*/
class ReducedGB : public GBComputation
{
protected:
GBRing *R;
const PolynomialRing *originalR;
const FreeModule *F;
const FreeModule *Fsyz;
VECTOR(POLY) polys;
virtual bool stop_conditions_ok() { return true; }
// If the stop conditions in _Stop are inappropriate,
// return false, and use ERROR(...) to provide an error message.
ReducedGB(GBRing *R0,
const PolynomialRing *originalR0,
const FreeModule *F0,
const FreeModule *Fsyz0);
public:
virtual ~ReducedGB();
static ReducedGB *create(const PolynomialRing *originalR0,
const FreeModule *F0,
const FreeModule *Fsyz0,
const GBWeight *wt0 = 0);
virtual GBComputation *cast_to_GBComputation() { return this; }
virtual void start_computation() {}
virtual int complete_thru_degree() const { return 0; }
// The computation is complete up through this degree.
// Recall that the status of the computation is maintained by the Computation
// class,
virtual const Ring *get_ring() const { return originalR; }
////////////////////////////////
// Results of the computation //
////////////////////////////////
virtual const Matrix /* or null */ *get_gb();
virtual const Matrix /* or null */ *get_mingens();
virtual const Matrix /* or null */ *get_change();
virtual const Matrix /* or null */ *get_syzygies();
virtual const Matrix /* or null */ *get_initial(int nparts);
virtual const Matrix /* or null */ *get_parallel_lead_terms(M2_arrayint w);
//////////////////////////////////////
// Statistics and spair information //
//////////////////////////////////////
virtual void text_out(buffer &o) const;
// This displays statistical information, and depends on the
// M2_gbTrace value.
////////////////////////////////
// Normal forms and lifting ////
////////////////////////////////
virtual const Matrix /* or null */ *matrix_remainder(const Matrix *m);
virtual M2_bool matrix_lift(const Matrix *m,
const Matrix /* or null */ **result_remainder,
const Matrix /* or null */ **result_quotient);
virtual int contains(const Matrix *m);
////////////////////////////////////////////////
// The following are the functions which need //
// to be provided by subclasses //
////////////////////////////////////////////////
virtual void set_gb(VECTOR(POLY) & polys0) = 0;
virtual void minimalize(const VECTOR(POLY) & polys0, bool auto_reduce = true)
{
}
// I have to decide: does this ADD to the existing set?
// Choose a minimal set of generators of the lead terms.
// sort the resulting elements
// auto reduce them
// This class will be subclassed by:
// base is a field
// base is ZZ, strong GB
// base is ZZ, weak GB
// base is a frac field, # frac vars is given.
// ring has a local term order: reduction can not be complete...
// const VECTOR(POLY) &get() const { return polys; }
virtual void remainder(POLY &f, bool use_denom, ring_elem &denom) = 0;
// WARNING: this should only be used with term orders!
// REALLY??
virtual void remainder(gbvector *&f, bool use_denom, ring_elem &denom) = 0;
};
#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|