File: ring.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (436 lines) | stat: -rw-r--r-- 10,062 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
// Copyright 1995-2020 Michael E. Stillman

#include "ring.hpp"

#include "ZZ.hpp"          // for RingZZ
#include "coeffrings.hpp"  // for CoefficientRingR
#include "freemod.hpp"     // for FreeModule
#include "monoid.hpp"      // for Monoid
#include "poly.hpp"        // for PolyRing
#include "polyring.hpp"    // for PolynomialRing

const Monoid *Ring::degree_monoid() const { return degree_ring->getMonoid(); }
#if 1
RingZZ *makeIntegerRing() { return new RingZZ; }
#endif
#if 0
ARingZZ* makeIntegerRing()
{
  return new M2::ConcreteRing<M2::ARingZZ>;
}
#endif

const CoefficientRingR *Ring::getCoefficientRingR() const
{
  if (cR == nullptr) cR = new CoefficientRingR(this);
  return cR;
}

void Ring::initialize_ring(long P0,
                           const PolynomialRing *DR,
                           const M2_arrayint heft_vec)
{
  // Remember: if this is a poly ring, the ring is K[M].
  // If this is a basic routine, K = this, M = trivial monoid.
  // If this is a frac field, K = R, M = trivial monoid.
  mCharacteristic = P0;
  if (DR == nullptr)
    degree_ring = PolyRing::get_trivial_poly_ring();
  else
    degree_ring = DR;
  heft_vector = heft_vec;

  _non_unit = ZERO_RINGELEM;
  _isfield = 0;

  zeroV = ZERO_RINGELEM;
  oneV = ZERO_RINGELEM;
  minus_oneV = ZERO_RINGELEM;
}

Ring::~Ring() {}
FreeModule *Ring::make_FreeModule() const
{
  return new FreeModule(this, 0, false);
}

FreeModule *Ring::make_Schreyer_FreeModule() const
{
  return new FreeModule(this, 0, true);
}

FreeModule *Ring::make_FreeModule(int n) const
{
  return new FreeModule(this, n, false);
}

bool Ring::is_field() const { return _isfield == 1; }
bool Ring::declare_field()
{
  if (_isfield >= 0)
    {
      _isfield = 1;
      return true;
    }
  else
    {
      ERROR("attempting to declare a ring with known non-units to be a field");
      return false;
    }
}
ring_elem Ring::get_non_unit() const
{
  if (_isfield >= 0) return zero();
  return copy(_non_unit);
}

void Ring::set_non_unit(ring_elem non_unit) const
{
  if (_isfield == 1)  // i.e. declared to be a field
    ERROR("a non unit was found in a ring declared to be a field");
  const_cast<Ring *>(this)->_isfield = -1;
  const_cast<Ring *>(this)->_non_unit = non_unit;
}

ring_elem Ring::var(int v) const
{
  // The default behavior is to just return 0.
  return zeroV;
}

/// @brief Exponentiation. This is the default function, if a class doesn't
/// define this.
//
//  The method used is successive squaring.
//  Which classes actually use this?
ring_elem Ring::power(const ring_elem gg, mpz_srcptr m) const
{
  ring_elem ff = gg;
  int cmp = mpz_sgn(m);  // the sign of m, <0, ==0, >0
  if (cmp == 0) return one();
  mpz_t n;
  mpz_init_set(n, m);
  // @TODO MES: rewrite this so it inverts before creating n.
  // That way we don't have to catch any exceptions here.
  // e.g. as
#if 0  
  if (cmp < 0)
    ff = invert(ff);
  mpz_init_set(n, m);
  mpz_t n;
  if (cmp < 0)
    mpz_neg(n, n);
#endif
  if (cmp < 0)
    {
      mpz_neg(n, n);
      ff = invert(
          ff);  // this can raise an exception, in which case we need to free n.
      if (is_zero(ff))
        {
          ERROR(
              "either element not invertible, or no method available to "
              "compute its inverse");
          mpz_clear(n);
          return ff;
        }
    }
  ring_elem prod = from_long(1);
  ring_elem base = copy(ff);
  ring_elem tmp;

  for (;;)
    {
      if (RingZZ::mod_ui(n, 2) == 1)
        {
          tmp = mult(prod, base);
          prod = tmp;
        }
      mpz_tdiv_q_2exp(n, n, 1);
      if (mpz_sgn(n) == 0)
        {
          mpz_clear(n);
          return prod;
        }
      else
        {
          tmp = mult(base, base);
          base = tmp;
        }
    }
}

ring_elem Ring::power(const ring_elem gg, int n) const
{
  // TODO: reorganize to match the above routine (but using an int).
  ring_elem ff = gg;
  if (n == 0) return one();
  if (n < 0)
    {
      n = -n;
      ff = invert(ff);
      if (is_zero(ff))
        {
          ERROR("negative power of noninvertible element requested");
          return ff;
        }
    }

  // The exponent 'n' should be > 0 here.
  ring_elem prod = from_long(1);
  ring_elem base = copy(ff);
  ring_elem tmp;

  for (;;)
    {
      if ((n % 2) != 0)
        {
          tmp = mult(prod, base);
          prod = tmp;
        }
      n >>= 1;
      if (n == 0) { return prod; }
      else
        {
          tmp = mult(base, base);
          base = tmp;
        }
    }
}

void Ring::mult_to(ring_elem &f, const ring_elem g) const { f = mult(f, g); }
void Ring::add_to(ring_elem &f, const ring_elem &g) const { f = add(f, g); }
void Ring::subtract_to(ring_elem &f, const ring_elem &g) const
{
  f = subtract(f, g);
}
void Ring::negate_to(ring_elem &f) const { f = negate(f); }
ring_elem Ring::remainder(const ring_elem f, const ring_elem g) const
{
  if (is_zero(g)) return f;
  return zero();
}

ring_elem Ring::quotient(const ring_elem f, const ring_elem g) const
{
  if (is_zero(g)) return g;
  return divide(f, g);
}

ring_elem Ring::remainderAndQuotient(const ring_elem f,
                                     const ring_elem g,
                                     ring_elem &quot) const
{
  if (is_zero(g))
    {
      quot = g;  // zero
      return f;
    }
  quot = divide(f, g);
  return zero();
}

std::pair<bool, long> Ring::coerceToLongInteger(ring_elem a) const
{
  return std::pair<bool, long>(false,
                               0);  // the default is that it cannot be lifted.
}

bool Ring::from_BigComplex(gmp_CC z, ring_elem &result) const
{
  result = from_long(0);
  return false;
}

bool Ring::from_BigReal(gmp_RR z, ring_elem &result) const
{
  result = from_long(0);
  return false;
}

bool Ring::from_Interval(gmp_RRi z, ring_elem &result) const
{
  result = from_long(0);
  return false;
}

bool Ring::from_double(double a, ring_elem &result) const
{
  result = from_long(0);
  return false;
}
bool Ring::from_complex_double(double re, double im, ring_elem &result) const
{
  result = from_long(0);
  return false;
}

ring_elem Ring::random() const
{
  ERROR("random scalar elements for this ring are not implemented");
  return 0;
}

ring_elem Ring::preferred_associate(ring_elem f) const
{
  // Here we assume that 'this' is a field:
  if (is_zero(f)) return from_long(1);
  return invert(f);
}

bool Ring::lower_associate_divisor(ring_elem &f, const ring_elem g) const
// Implementation for a basic ring
{
  if (is_zero(f))
    {
      f = g;
      return !is_zero(f);
    }
  return true;
}

void Ring::lower_content(ring_elem &result, ring_elem g) const
// default implementation
{
  // The default implementation here ASSUMES that result and g are in the same
  // ring!
  if (is_zero(result)) result = g;
}

ring_elem Ring::content(ring_elem f) const
// default implementation
{
  return f;
}

ring_elem Ring::content(ring_elem f, ring_elem g) const
// default implementation
{
  lower_content(f, g);
  return f;
}

ring_elem Ring::divide_by_given_content(ring_elem f, ring_elem c) const
// default implementation
{
  // The default implementation here ASSUMES that f and c are in the same ring!
  return divide(f, c);
}

ring_elem Ring::divide_by_content(ring_elem f) const
{
  ring_elem c = content(f);
  return divide_by_given_content(f, c);
}

ring_elem Ring::split_off_content(ring_elem f, ring_elem &result) const
{
  ring_elem c = content(f);
  result = divide_by_given_content(f, c);
  return c;
}

void Ring::monomial_divisor(const ring_elem a, int *exp) const
{
  // Do nothing
}

ring_elem Ring::diff(ring_elem a, ring_elem b, int use_coeff) const
{
  return mult(a, b);
}

bool Ring::in_subring(int nslots, const ring_elem a) const { return true; }
void Ring::degree_of_var(int n, const ring_elem a, int &lo, int &hi) const
{
  lo = 0;
  hi = 0;
}

ring_elem Ring::divide_by_var(int n, int d, const ring_elem a) const
{
  if (d == 0) return a;
  return from_long(0);
}

ring_elem Ring::divide_by_expvector(const int *exp, const ring_elem a) const
{
  return a;
}

ring_elem Ring::homogenize(const ring_elem f, int, int deg, M2_arrayint) const
{
  if (deg != 0) ERROR("homogenize: no homogenization exists");
  return f;
}

ring_elem Ring::homogenize(const ring_elem f, int, M2_arrayint) const
{
  return f;
}

bool Ring::is_homogeneous(const ring_elem) const { return true; }
void Ring::degree(const ring_elem, int *d) const { degree_monoid()->one(d); }
bool Ring::multi_degree(const ring_elem f, int *d) const
// returns true iff f is homogeneous
{
  degree_monoid()->one(d);
  return true;
}

void Ring::degree_weights(const ring_elem, M2_arrayint, int &lo, int &hi) const
{
  lo = hi = 0;
}
int Ring::index_of_var(const ring_elem a) const { return -1; }
M2_arrayint Ring::support(const ring_elem a) const
{
  M2_arrayint result = M2_makearrayint(0);
  return result;
}

// These next three routines are only overridden by RRR,CCC,polynomial rings,
// and quotient rings
unsigned long Ring::get_precision() const { return 0; }
ring_elem Ring::zeroize_tiny(gmp_RR epsilon, const ring_elem f) const
// Default is to return f itself.
{
  return f;
}

void Ring::increase_maxnorm(gmp_RRmutable norm, const ring_elem f) const
// If any real number appearing in f has larger absolute value than norm,
// replace norm.
{
  // Default for rings not over RRR or CCC is to do nothing.
}

///////////////////////////////////
// SumCollector: default version //
///////////////////////////////////
class SumCollectorDefault : public SumCollector
{
  const Ring *R;
  ring_elem result;

 public:
  SumCollectorDefault(const Ring *R0) : R(R0), result(R->zero()) {}
  virtual ~SumCollectorDefault() {}
  virtual void add(ring_elem f) { R->add_to(result, f); }
  virtual ring_elem getValue()
  {
    ring_elem val = result;
    result = R->zero();
    return val;
  }
};

SumCollector *Ring::make_SumCollector() const
{
  return new SumCollectorDefault(this);
}

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: