File: ringmap.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (258 lines) | stat: -rw-r--r-- 6,870 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright 1996  Michael E. Stillman

#include "ringmap.hpp"
#include "matrix.hpp"
#include "matrix-con.hpp"
#include "polyring.hpp"
#include "relem.hpp"

#include <iostream>
RingMap::RingMap(const Matrix *m) : R(m->get_ring())
{
  M = 0;
  P = R->cast_to_PolynomialRing();
  if (P != 0)
    {
      M = P->getMonoid();
      K = P->getCoefficientRing();
    }
  else
    K = R;

  nvars = m->n_cols();
  is_monomial = true;

  ring_elem one = K->from_long(1);

  // Allocate space for the ring map elements
  _elem = new var[nvars];

  for (int i = 0; i < nvars; i++)
    {
      // First initialize these fields:
      _elem[i].is_zero = false;
      _elem[i].coeff_is_one = true;
      _elem[i].monom_is_one = true;
      _elem[i].bigelem_is_one = true;
      _elem[i].coeff = ZERO_RINGELEM;
      _elem[i].monom = NULL;

      ring_elem f = m->elem(0, i);  // This does a copy.
      _elem[i].bigelem = f;

      if (R->is_zero(f))
        _elem[i].is_zero = true;
      else if (P == 0)
        {
          // Not a polynomial ring, so put everything into coeff
          if (!K->is_equal(f, one))
            {
              _elem[i].coeff_is_one = false;
              _elem[i].coeff = K->copy(f);
            }
        }
      else
        {
// A polynomial ring.
#ifdef DEVELOPMENT
#warning "also handle fraction rings"
#endif
          Nterm *t = f;
          if (t->next == NULL)
            {
              // This is a single term
              if (!K->is_equal(t->coeff, one))
                {
                  _elem[i].coeff_is_one = false;
                  _elem[i].coeff = K->copy(t->coeff);
                }

              if (!M->is_one(t->monom))  // should handle M->n_vars() == 0 case
                                         // correctly.
                {
                  _elem[i].monom_is_one = false;
                  _elem[i].monom = M->make_new(t->monom);
                }
            }
          else
            {
              // This is a bigterm
              is_monomial = false;
              _elem[i].bigelem_is_one = false;
            }
        }
      K->remove(one);
    }
}

RingMap::~RingMap()
{
  for (int i = 0; i < nvars; i++)
    {
      if (!_elem[i].coeff_is_one) K->remove(_elem[i].coeff);
      if (!_elem[i].monom_is_one) M->remove(_elem[i].monom);
      R->remove(_elem[i].bigelem);
    }
  freemem(_elem);
  K = NULL;
  M = NULL;
}

unsigned int RingMap::computeHashValue() const
{
  unsigned int hashval = 4565 * get_ring()->hash();
  for (int i = 0; i < nvars; i++)
    {
      hashval =
          46343 * hashval + get_ring()->computeHashValue(_elem[i].bigelem);
    }
  return hashval;
}
bool RingMap::is_equal(const RingMap *phi) const
{
  // Two ringmap's are identical if their 'bigelem's are the same
  if (R != phi->get_ring()) return false;
  if (nvars != phi->nvars) return false;

  for (int i = 0; i < nvars; i++)
    if (!R->is_equal(elem(i), phi->elem(i))) return false;

  return true;
}

const RingMap *RingMap::make(const Matrix *m)
{
  RingMap *result = new RingMap(m);
  return result;
}

void RingMap::text_out(buffer &o) const
{
  o << "(";
  for (int i = 0; i < nvars; i++)
    {
      if (i > 0) o << ", ";
      R->elem_text_out(o, _elem[i].bigelem);
    }
  o << ")";
}

ring_elem RingMap::eval_term(const Ring *sourceK,  // source coeff ring
                             const ring_elem a,  // coefficient of term
                             const int *vp, // varpower monomial
                             int first_var,
                             int nvars_in_source) const
{
  for (index_varpower i = vp; i.valid(); ++i)
    {
      int v = first_var + i.var();
      if (v >= nvars || _elem[v].is_zero)
        return R->from_long(0);  // The result is zero.
    }

  // If K is a coeff ring of R, AND map is an identity on K,
  // then don't recurse: use this value directly.
  // Otherwise, we must recurse, I guess.
  ring_elem result = sourceK->eval(this, a, first_var + nvars_in_source);
  if (R->is_zero(result)) return result;

  int *result_monom = NULL;
  int *temp_monom = NULL;
  ring_elem result_coeff = K->from_long(1);

  if (P != 0)
    {
      result_monom = M->make_one();
      temp_monom = M->make_one();
    }

  if (!R->is_commutative_ring() || R->cast_to_SchurRing())
    {
      // This is the only non-commutative case so far
      for (index_varpower i = vp; i.valid(); ++i)
        {
          int v = first_var + i.var();
          int e = i.exponent();
          ring_elem g;
          if (e >= 0)
            g = _elem[v].bigelem;
          else
            g = R->invert(_elem[v].bigelem);
          for (int j = 0; j < e; j++)
            {
              assert(v < nvars);
              ring_elem tmp = R->mult(g, result);
              R->remove(result);
              result = tmp;
            }
        }
    }
  else
    {
      for (index_varpower i = vp; i.valid(); ++i)
        {
          int v = first_var + i.var();
          int e = i.exponent();
          assert(v < nvars);
          if (_elem[v].bigelem_is_one && e > 0)
            {
              if (!_elem[v].coeff_is_one)
                {
                  ring_elem tmp = K->power(_elem[v].coeff, e);
                  K->mult_to(result_coeff, tmp);
                  K->remove(tmp);
                }
              if (!_elem[v].monom_is_one)
                {
                  M->power(_elem[v].monom, e, temp_monom);
                  M->mult(result_monom, temp_monom, result_monom);
                }
            }
          else
            {
              ring_elem thispart = R->power(_elem[v].bigelem, e);
              R->mult_to(result, thispart);
              R->remove(thispart);
              if (R->is_zero(result)) break;
            }
        }
      if (P != 0)
        {
          ring_elem temp = P->make_flat_term(result_coeff, result_monom);
          K->remove(result_coeff);
          M->remove(result_monom);
          M->remove(temp_monom);
          P->mult_to(result, temp);
          P->remove(temp);
        }
      else
        {
          // result_monom has not been used
          // and result, result_coeff are both in the ring K
          result = K->mult(result, result_coeff);
        }
    }
  return result;
}

RingElement /* or null */ *RingMap::eval(const RingElement *r) const
{
  RingElement *result = RingElement::make_raw(
      get_ring(), r->get_ring()->eval(this, r->get_value(), 0));
  if (error()) return nullptr;
  return result;
}

Matrix /* or null */ *RingMap::eval(const FreeModule *F, const Matrix *m) const
{
  MatrixConstructor mat(F, 0);
  for (int i = 0; i < m->n_cols(); i++)
    mat.append(m->get_ring()->vec_eval(this, F, m->elem(i)));
  if (error()) return nullptr;
  return mat.to_matrix();
}

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: