File: schorder.cpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (357 lines) | stat: -rw-r--r-- 9,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#include <algorithm>
#include <iostream>

#include "schorder.hpp"
#include "matrix.hpp"
#include "comb.hpp"
#include "polyring.hpp"
#include "Eschreyer.hpp"
#include "finalize.hpp"

SchreyerOrder *SchreyerOrder::create(const Monoid *M)
{
  SchreyerOrder *S = new SchreyerOrder(M);
  intern_SchreyerOrder(S);
  return S;
}

void SchreyerOrder::remove() { _order.remove(); }
void SchreyerOrder::append(int compare_num0, const int *baseMonom)
{
  int *me = _order.alloc(_nslots);
  *me++ = compare_num0;
  for (int i = 1; i < _nslots; i++) *me++ = *baseMonom++;
  _rank++;
}

SchreyerOrder *SchreyerOrder::create(const Matrix *m)
{
  int i;
  const Ring *R = m->get_ring();
  const SchreyerOrder *S = m->rows()->get_schreyer_order();
  const PolynomialRing *P = R->cast_to_PolynomialRing();
  if (P == 0)
    {
      throw exc::engine_error("expected polynomial ring");
    }
  const Monoid *M = P->getMonoid();
  SchreyerOrder *result = new SchreyerOrder(M);
  int rk = m->n_cols();
  if (rk == 0) return result;
  int *base = M->make_one();
  int *tiebreaks = newarray_atomic(int, rk);
  int *ties = newarray_atomic(int, rk);
  for (i = 0; i < rk; i++)
    {
      vec v = (*m)[i];
      if (v == NULL || S == NULL)
        tiebreaks[i] = i;
      else
        tiebreaks[i] = i + rk * S->compare_num(v->comp);
    }
  // Now sort tiebreaks in increasing order.
  std::sort<int *>(tiebreaks, tiebreaks + rk);
  for (i = 0; i < rk; i++) ties[tiebreaks[i] % rk] = i;
  for (i = 0; i < rk; i++)
    {
      vec v = (*m)[i];
      if (v == NULL)
        M->one(base);
      else if (S == NULL)
        M->copy(P->lead_flat_monomial(v->coeff), base);
      else
        {
          int x = v->comp;
          M->mult(P->lead_flat_monomial(v->coeff), S->base_monom(x), base);
        }

      result->append(ties[i], base);
    }

  intern_SchreyerOrder(result);
  M->remove(base);
  freemem(tiebreaks);
  freemem(ties);
  return result;
}

SchreyerOrder *SchreyerOrder::create(const GBMatrix *m)
{
#ifdef DEVELOPMENT
#warning "the logic in SchreyerOrder creation is WRONG!"
#endif
  int i;
  const FreeModule *F = m->get_free_module();
  const Ring *R = F->get_ring();
  const SchreyerOrder *S = F->get_schreyer_order();
  const PolynomialRing *P = R->cast_to_PolynomialRing();
  const Monoid *M = P->getMonoid();
  SchreyerOrder *result = new SchreyerOrder(M);
  int rk = INTSIZE(m->elems);
  if (rk == 0) return result;

  int *base = M->make_one();
  int *tiebreaks = newarray_atomic(int, rk);
  int *ties = newarray_atomic(int, rk);
  for (i = 0; i < rk; i++)
    {
      gbvector *v = m->elems[i];
      if (v == NULL || S == NULL)
        tiebreaks[i] = i;
      else
        tiebreaks[i] = i + rk * S->compare_num(v->comp - 1);
    }
  // Now sort tiebreaks in increasing order.
  std::sort<int *>(tiebreaks, tiebreaks + rk);
  for (i = 0; i < rk; i++) ties[tiebreaks[i] % rk] = i;
  for (i = 0; i < rk; i++)
    {
      gbvector *v = m->elems[i];
      if (v == NULL)
        M->one(base);
      else  // if (S == NULL)
        M->copy(v->monom, base);
#ifdef DEVELOPMENT
#warning "Schreyer unencoded case not handled here"
#endif
#if 0
//       else
//      M->mult(v->monom, S->base_monom(i), base);
#endif
      result->append(ties[i], base);
    }

  intern_SchreyerOrder(result);
  M->remove(base);
  freemem(tiebreaks);
  freemem(ties);
  return result;
}

bool SchreyerOrder::is_equal(const SchreyerOrder *G) const
// A schreyer order is never equal to a non-Schreyer order, even
// if the monomials are all ones.
{
  if (G == NULL) return false;
  for (int i = 0; i < rank(); i++)
    {
      if (compare_num(i) != G->compare_num(i)) return false;
      if (M->compare(base_monom(i), G->base_monom(i)) != 0) return false;
    }
  return true;
}

SchreyerOrder *SchreyerOrder::copy() const
{
  SchreyerOrder *result = new SchreyerOrder(M);
  for (int i = 0; i < rank(); i++)
    result->append(compare_num(i), base_monom(i));
  return result;
}

SchreyerOrder *SchreyerOrder::sub_space(int n) const
{
  if (n < 0 || n > rank())
    {
      ERROR("sub schreyer order: index out of bounds");
      return NULL;
    }
  SchreyerOrder *result = new SchreyerOrder(M);
  for (int i = 0; i < n; i++) result->append(compare_num(i), base_monom(i));
  return result;
}

SchreyerOrder *SchreyerOrder::sub_space(M2_arrayint a) const
{
  // Since this is called only from FreeModule::sub_space,
  // the elements of 'a' are all in bounds, and do not need to be checked...
  // BUT, we check anyway...
  SchreyerOrder *result = new SchreyerOrder(M);
  for (unsigned int i = 0; i < a->len; i++)
    if (a->array[i] >= 0 && a->array[i] < rank())
      result->append(compare_num(a->array[i]), base_monom(a->array[i]));
    else
      {
        ERROR("schreyer order subspace: index out of bounds");
        freemem(result);
        return NULL;
      }
  return result;
}

void SchreyerOrder::append_order(const SchreyerOrder *G)
{
  for (int i = 0; i < G->rank(); i++)
    append(G->compare_num(i), G->base_monom(i));
}

SchreyerOrder *SchreyerOrder::direct_sum(const SchreyerOrder *G) const
{
  SchreyerOrder *result = new SchreyerOrder(M);
  result->append_order(this);
  result->append_order(G);
  return result;
}

SchreyerOrder *SchreyerOrder::tensor(const SchreyerOrder *G) const
// tensor product
{
  // Since this is called only from FreeModule::tensor,
  // we assume that 'this', 'G' have the same monoid 'M'.

  SchreyerOrder *result = new SchreyerOrder(M);
  int *base = M->make_one();

  int next = 0;
  for (int i = 0; i < rank(); i++)
    for (int j = 0; j < G->rank(); j++)
      {
        M->mult(base_monom(i), G->base_monom(j), base);
        result->append(next++, base);
      }

  M->remove(base);
  return result;
}

SchreyerOrder *SchreyerOrder::exterior(int pp) const
// p th exterior power
{
  // This routine is only called from FreeModule::exterior.
  // Therefore: p is in the range 0 < p <= rk.
  SchreyerOrder *result = new SchreyerOrder(M);
  int rk = rank();

  assert(pp > 0);
  assert(pp <= rk);
  size_t p = static_cast<size_t>(pp);

  Subset a(p, 0);
  for (size_t i = 0; i < p; i++) a[i] = i;

  int *base = M->make_one();
  int next = 0;
  do
    {
      M->one(base);
      for (size_t r = 0; r < p; r++)
        M->mult(base, base_monom(static_cast<int>(a[r])), base);

      result->append(next++, base);
    }
  while (Subsets::increment(rk, a));

  M->remove(base);
  return result;
}

struct SchreyerOrder_symm
{
  const SchreyerOrder *S;  // original one
  int n;
  const Monoid *M;

  SchreyerOrder *symm1_result;  // what is being computed
  int *symm1_base;              // used in recursion
  int symm1_next;               // used in recursion

  void symm1(int lastn,  // can use lastn..rank()-1 in product
             int pow)    // remaining power to take
  {
    if (pow == 0)
      symm1_result->append(symm1_next++, symm1_base);
    else
      {
        for (int i = lastn; i < S->rank(); i++)
          {
            // increase symm1_base with e_i
            M->mult(symm1_base, S->base_monom(i), symm1_base);

            symm1(i, pow - 1);

            // decrease symm1_base back
            M->divide(symm1_base, S->base_monom(i), symm1_base);
          }
      }
  }

  SchreyerOrder_symm(const SchreyerOrder *S0, int n0)
      : S(S0),
        n(n0),
        M(S0->getMonoid()),
        symm1_result(0),
        symm1_base(0),
        symm1_next(0)
  {
  }

  SchreyerOrder *value()
  {
    if (symm1_result == 0)
      {
        symm1_result = SchreyerOrder::create(M);
        if (n >= 0)
          {
            symm1_base = M->make_one();
            symm1(0, n);
            M->remove(symm1_base);
          }
      }
    return symm1_result;
  }
};

SchreyerOrder *SchreyerOrder::symm(int n) const
// n th symmetric power
{
  SchreyerOrder_symm S(this, n);
  return S.value();
}

void SchreyerOrder::text_out(buffer &o) const
{
  for (int i = 0; i < _rank; i++)
    {
      if (i != 0) o << ' ';
      M->elem_text_out(o, base_monom(i));
      o << '.';
      o << compare_num(i);
    }
}

int SchreyerOrder::schreyer_compare(const int *m,
                                    int m_comp,
                                    const int *n,
                                    int n_comp) const
{
  const int *ms = base_monom(m_comp);
  const int *ns = base_monom(n_comp);
  for (int i = M->monomial_size(); i > 0; --i)
    {
      int cmp = *ms++ + *m++ - *ns++ - *n++;
      if (cmp < 0) return LT;
      if (cmp > 0) return GT;
    }
  int cmp = compare_num(m_comp) - compare_num(n_comp);
  if (cmp < 0) return LT;
  if (cmp > 0) return GT;
  return EQ;
}

int SchreyerOrder::schreyer_compare_encoded(const int *m,
                                            int m_comp,
                                            const int *n,
                                            int n_comp) const
{
  int cmp = M->compare(m, n);
  if (cmp != EQ) return cmp;
  cmp = compare_num(m_comp) - compare_num(n_comp);
  if (cmp < 0) return LT;
  if (cmp > 0) return GT;
  return EQ;
}

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End: