1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
#include <algorithm>
#include <iostream>
#include "schorder.hpp"
#include "matrix.hpp"
#include "comb.hpp"
#include "polyring.hpp"
#include "Eschreyer.hpp"
#include "finalize.hpp"
SchreyerOrder *SchreyerOrder::create(const Monoid *M)
{
SchreyerOrder *S = new SchreyerOrder(M);
intern_SchreyerOrder(S);
return S;
}
void SchreyerOrder::remove() { _order.remove(); }
void SchreyerOrder::append(int compare_num0, const int *baseMonom)
{
int *me = _order.alloc(_nslots);
*me++ = compare_num0;
for (int i = 1; i < _nslots; i++) *me++ = *baseMonom++;
_rank++;
}
SchreyerOrder *SchreyerOrder::create(const Matrix *m)
{
int i;
const Ring *R = m->get_ring();
const SchreyerOrder *S = m->rows()->get_schreyer_order();
const PolynomialRing *P = R->cast_to_PolynomialRing();
if (P == 0)
{
throw exc::engine_error("expected polynomial ring");
}
const Monoid *M = P->getMonoid();
SchreyerOrder *result = new SchreyerOrder(M);
int rk = m->n_cols();
if (rk == 0) return result;
int *base = M->make_one();
int *tiebreaks = newarray_atomic(int, rk);
int *ties = newarray_atomic(int, rk);
for (i = 0; i < rk; i++)
{
vec v = (*m)[i];
if (v == NULL || S == NULL)
tiebreaks[i] = i;
else
tiebreaks[i] = i + rk * S->compare_num(v->comp);
}
// Now sort tiebreaks in increasing order.
std::sort<int *>(tiebreaks, tiebreaks + rk);
for (i = 0; i < rk; i++) ties[tiebreaks[i] % rk] = i;
for (i = 0; i < rk; i++)
{
vec v = (*m)[i];
if (v == NULL)
M->one(base);
else if (S == NULL)
M->copy(P->lead_flat_monomial(v->coeff), base);
else
{
int x = v->comp;
M->mult(P->lead_flat_monomial(v->coeff), S->base_monom(x), base);
}
result->append(ties[i], base);
}
intern_SchreyerOrder(result);
M->remove(base);
freemem(tiebreaks);
freemem(ties);
return result;
}
SchreyerOrder *SchreyerOrder::create(const GBMatrix *m)
{
#ifdef DEVELOPMENT
#warning "the logic in SchreyerOrder creation is WRONG!"
#endif
int i;
const FreeModule *F = m->get_free_module();
const Ring *R = F->get_ring();
const SchreyerOrder *S = F->get_schreyer_order();
const PolynomialRing *P = R->cast_to_PolynomialRing();
const Monoid *M = P->getMonoid();
SchreyerOrder *result = new SchreyerOrder(M);
int rk = INTSIZE(m->elems);
if (rk == 0) return result;
int *base = M->make_one();
int *tiebreaks = newarray_atomic(int, rk);
int *ties = newarray_atomic(int, rk);
for (i = 0; i < rk; i++)
{
gbvector *v = m->elems[i];
if (v == NULL || S == NULL)
tiebreaks[i] = i;
else
tiebreaks[i] = i + rk * S->compare_num(v->comp - 1);
}
// Now sort tiebreaks in increasing order.
std::sort<int *>(tiebreaks, tiebreaks + rk);
for (i = 0; i < rk; i++) ties[tiebreaks[i] % rk] = i;
for (i = 0; i < rk; i++)
{
gbvector *v = m->elems[i];
if (v == NULL)
M->one(base);
else // if (S == NULL)
M->copy(v->monom, base);
#ifdef DEVELOPMENT
#warning "Schreyer unencoded case not handled here"
#endif
#if 0
// else
// M->mult(v->monom, S->base_monom(i), base);
#endif
result->append(ties[i], base);
}
intern_SchreyerOrder(result);
M->remove(base);
freemem(tiebreaks);
freemem(ties);
return result;
}
bool SchreyerOrder::is_equal(const SchreyerOrder *G) const
// A schreyer order is never equal to a non-Schreyer order, even
// if the monomials are all ones.
{
if (G == NULL) return false;
for (int i = 0; i < rank(); i++)
{
if (compare_num(i) != G->compare_num(i)) return false;
if (M->compare(base_monom(i), G->base_monom(i)) != 0) return false;
}
return true;
}
SchreyerOrder *SchreyerOrder::copy() const
{
SchreyerOrder *result = new SchreyerOrder(M);
for (int i = 0; i < rank(); i++)
result->append(compare_num(i), base_monom(i));
return result;
}
SchreyerOrder *SchreyerOrder::sub_space(int n) const
{
if (n < 0 || n > rank())
{
ERROR("sub schreyer order: index out of bounds");
return NULL;
}
SchreyerOrder *result = new SchreyerOrder(M);
for (int i = 0; i < n; i++) result->append(compare_num(i), base_monom(i));
return result;
}
SchreyerOrder *SchreyerOrder::sub_space(M2_arrayint a) const
{
// Since this is called only from FreeModule::sub_space,
// the elements of 'a' are all in bounds, and do not need to be checked...
// BUT, we check anyway...
SchreyerOrder *result = new SchreyerOrder(M);
for (unsigned int i = 0; i < a->len; i++)
if (a->array[i] >= 0 && a->array[i] < rank())
result->append(compare_num(a->array[i]), base_monom(a->array[i]));
else
{
ERROR("schreyer order subspace: index out of bounds");
freemem(result);
return NULL;
}
return result;
}
void SchreyerOrder::append_order(const SchreyerOrder *G)
{
for (int i = 0; i < G->rank(); i++)
append(G->compare_num(i), G->base_monom(i));
}
SchreyerOrder *SchreyerOrder::direct_sum(const SchreyerOrder *G) const
{
SchreyerOrder *result = new SchreyerOrder(M);
result->append_order(this);
result->append_order(G);
return result;
}
SchreyerOrder *SchreyerOrder::tensor(const SchreyerOrder *G) const
// tensor product
{
// Since this is called only from FreeModule::tensor,
// we assume that 'this', 'G' have the same monoid 'M'.
SchreyerOrder *result = new SchreyerOrder(M);
int *base = M->make_one();
int next = 0;
for (int i = 0; i < rank(); i++)
for (int j = 0; j < G->rank(); j++)
{
M->mult(base_monom(i), G->base_monom(j), base);
result->append(next++, base);
}
M->remove(base);
return result;
}
SchreyerOrder *SchreyerOrder::exterior(int pp) const
// p th exterior power
{
// This routine is only called from FreeModule::exterior.
// Therefore: p is in the range 0 < p <= rk.
SchreyerOrder *result = new SchreyerOrder(M);
int rk = rank();
assert(pp > 0);
assert(pp <= rk);
size_t p = static_cast<size_t>(pp);
Subset a(p, 0);
for (size_t i = 0; i < p; i++) a[i] = i;
int *base = M->make_one();
int next = 0;
do
{
M->one(base);
for (size_t r = 0; r < p; r++)
M->mult(base, base_monom(static_cast<int>(a[r])), base);
result->append(next++, base);
}
while (Subsets::increment(rk, a));
M->remove(base);
return result;
}
struct SchreyerOrder_symm
{
const SchreyerOrder *S; // original one
int n;
const Monoid *M;
SchreyerOrder *symm1_result; // what is being computed
int *symm1_base; // used in recursion
int symm1_next; // used in recursion
void symm1(int lastn, // can use lastn..rank()-1 in product
int pow) // remaining power to take
{
if (pow == 0)
symm1_result->append(symm1_next++, symm1_base);
else
{
for (int i = lastn; i < S->rank(); i++)
{
// increase symm1_base with e_i
M->mult(symm1_base, S->base_monom(i), symm1_base);
symm1(i, pow - 1);
// decrease symm1_base back
M->divide(symm1_base, S->base_monom(i), symm1_base);
}
}
}
SchreyerOrder_symm(const SchreyerOrder *S0, int n0)
: S(S0),
n(n0),
M(S0->getMonoid()),
symm1_result(0),
symm1_base(0),
symm1_next(0)
{
}
SchreyerOrder *value()
{
if (symm1_result == 0)
{
symm1_result = SchreyerOrder::create(M);
if (n >= 0)
{
symm1_base = M->make_one();
symm1(0, n);
M->remove(symm1_base);
}
}
return symm1_result;
}
};
SchreyerOrder *SchreyerOrder::symm(int n) const
// n th symmetric power
{
SchreyerOrder_symm S(this, n);
return S.value();
}
void SchreyerOrder::text_out(buffer &o) const
{
for (int i = 0; i < _rank; i++)
{
if (i != 0) o << ' ';
M->elem_text_out(o, base_monom(i));
o << '.';
o << compare_num(i);
}
}
int SchreyerOrder::schreyer_compare(const int *m,
int m_comp,
const int *n,
int n_comp) const
{
const int *ms = base_monom(m_comp);
const int *ns = base_monom(n_comp);
for (int i = M->monomial_size(); i > 0; --i)
{
int cmp = *ms++ + *m++ - *ns++ - *n++;
if (cmp < 0) return LT;
if (cmp > 0) return GT;
}
int cmp = compare_num(m_comp) - compare_num(n_comp);
if (cmp < 0) return LT;
if (cmp > 0) return GT;
return EQ;
}
int SchreyerOrder::schreyer_compare_encoded(const int *m,
int m_comp,
const int *n,
int n_comp) const
{
int cmp = M->compare(m, n);
if (cmp != EQ) return cmp;
cmp = compare_num(m_comp) - compare_num(n_comp);
if (cmp < 0) return LT;
if (cmp > 0) return GT;
return EQ;
}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|