1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
|
// Copyright 1996-2017 Michael E. Stillman
#include "schur2.hpp"
#include <stdio.h>
#include <iostream>
#include "text-io.hpp"
#include "ZZ.hpp"
#include "relem.hpp"
#include "monomial.hpp"
#include "ringmap.hpp"
#include "monoid.hpp"
const int SCHUR_MAX_WT = 100;
const int LARGE_NUMBER = 32000;
void tableau2::initialize(int nvars, int maxwt0)
{
maxwt = SCHUR_MAX_WT;
wt = 0;
lambda = nullptr;
p = nullptr;
xloc = newarray_atomic(int, SCHUR_MAX_WT + 1);
yloc = newarray_atomic(int, SCHUR_MAX_WT + 1);
}
void tableau2::resize(int max_wt)
{
if (max_wt <= SCHUR_MAX_WT) return;
freemem(xloc);
freemem(yloc);
maxwt = max_wt;
wt = max_wt;
xloc = newarray_atomic(int, maxwt + 1);
yloc = newarray_atomic(int, maxwt + 1);
}
int tableau2::elem(int x, int y) const
{
// slow: only used for debugging
for (int i = 1; i <= wt; i++)
if (xloc[i] == x && yloc[i] == y) return i;
// otherwise perhaps throw an error
fprintf(stderr, "tableau2: location (%d,%d) out of range\n", x, y);
return 0;
}
void tableau2::fill(int *lamb, int *pp) // FLAG: should be const, schur_word..
// Fill the skew tableau2 p\lambda with 1..nboxes
// starting at top right, moving left and then down
// row by row.
{
int i, j;
p = pp; // FLAG: why is this here?
lambda = lamb; // FLAG: why is this here?
int next = 1;
for (i = 1; i < p[0]; i++)
{
int a = lambda[i];
for (j = p[i]; j > a; j--)
{
xloc[next] = i;
yloc[next++] = j;
}
}
// display();
}
void tableau2::display() const
{
int i, j;
for (i = 1; i < p[0]; i++)
{
for (j = 1; j <= lambda[i]; j++) fprintf(stdout, "-- ");
for (; j <= p[i]; j++) fprintf(stdout, "%2d ", elem(i, j));
fprintf(stdout, "\n");
}
}
//////////////////////////////////////////
template<typename T>
static inline void hash_combine(size_t& seed, const T& val)
{
// the typical implementation
seed ^= std::hash<T>()(val) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
unsigned int SchurRing2::computeHashValue(const ring_elem a) const
{
// assuming a normal form: distinct monomials in the linear order introduced by compare_partitions()
const auto& coeffs = a.get_schur_poly()->coeffs;
const auto& monoms = a.get_schur_poly()->monoms;
size_t seed = 95864398; // using previous M2's constant hash value
for(auto it=coeffs.begin(); it!=coeffs.end(); ++it)
hash_combine(seed, coefficientRing->computeHashValue(*it));
for(auto it=monoms.begin(); it!=monoms.end(); ++it)
hash_combine(seed, *it);
return static_cast<unsigned>(seed);
}
bool operator==(const schur_poly::iterator &a, const schur_poly::iterator &b)
{
return a.ic == b.ic;
}
bool operator!=(const schur_poly::iterator &a, const schur_poly::iterator &b)
{
return a.ic != b.ic;
}
void schur_poly::appendTerm(ring_elem coeff, const_schur_partition monom)
{
coeffs.push_back(coeff);
for (int i = 0; i < monom[0]; i++) monoms.push_back(monom[i]);
}
void schur_poly::append(iterator &first, iterator &last)
{
for (; first != last; ++first)
appendTerm(first.getCoefficient(), first.getMonomial());
}
SchurRing2 *SchurRing2::create(const Ring *A, int n)
{
SchurRing2 *R = new SchurRing2(A, n);
R->initialize_SchurRing2();
return R;
}
SchurRing2 *SchurRing2::createInfinite(const Ring *A)
{
SchurRing2 *R = new SchurRing2(A);
R->initialize_SchurRing2();
return R;
}
SchurRing2::SchurRing2(const Ring *A, int n) : coefficientRing(A), nvars(n) {}
bool SchurRing2::initialize_SchurRing2()
{
initialize_ring(coefficientRing->characteristic());
zeroV = from_long(0);
oneV = from_long(1);
minus_oneV = from_long(-1);
SMinitialize(nvars, 0);
return true;
}
bool SchurRing2::is_valid_partition(M2_arrayint part, bool set_error) const
{
if (nvars >= 0 && part->len > nvars)
{
if (set_error) ERROR("expected a partition of size at most %d\n", nvars);
return false;
}
for (int i = 1; i < part->len; i++)
if (part->array[i - 1] < part->array[i])
{
if (set_error) ERROR("expected a non-increasing sequence of integers");
return false;
}
if (part->len > 0 && part->array[part->len - 1] < 0)
{
if (set_error) ERROR("expected nonnegative integers only");
return false;
}
return true;
}
static int last_nonzero(M2_arrayint part)
{
for (int i = part->len - 1; i >= 0; i--)
if (part->array[i] != 0) return i;
return -1;
}
ring_elem SchurRing2::from_partition(M2_arrayint part) const
{
schur_poly *f = new schur_poly;
f->coeffs.push_back(coefficientRing->one());
int len = last_nonzero(part) + 1;
f->monoms.push_back(len + 1);
for (int i = 0; i < len; i++) f->monoms.push_back(part->array[i]);
return ring_elem(f);
}
void SchurRing2::text_out(buffer &o) const
{
o << "SchurRing2(";
if (nvars >= 0) o << nvars << ",";
coefficientRing->text_out(o);
o << ")";
}
void SchurRing2::elem_text_out(buffer &o,
const ring_elem f,
bool p_one,
bool p_plus,
bool p_parens) const
{
const schur_poly *g = f.get_schur_poly();
size_t n = g->size();
bool needs_parens = p_parens && (n > 1);
if (needs_parens)
{
if (p_plus) o << '+';
o << '(';
p_plus = false;
}
p_one = false;
for (schur_poly::iterator i = g->begin(); i != g->end(); ++i)
{
const_schur_partition part = i.getMonomial();
int len = *part++;
int isone = (len == 1); // the empty partition
p_parens = !isone;
coefficientRing->elem_text_out(
o, i.getCoefficient(), p_one, p_plus, p_parens);
o << "{";
for (int j = 0; j < len - 1; j++)
{
if (j > 0) o << ",";
o << part[j];
}
o << "}";
p_plus = true;
}
if (needs_parens) o << ')';
}
bool SchurRing2::is_unit(const ring_elem f) const
{
const schur_poly *g = f.get_schur_poly();
if (g->size() != 1) return false;
return (g->monoms.size() == 1) && (coefficientRing->is_unit(g->coeffs[0]));
}
bool SchurRing2::is_zero(const ring_elem f) const
{
const schur_poly *g = f.get_schur_poly();
return g->size() == 0;
}
bool SchurRing2::is_equal(const ring_elem f, const ring_elem g) const
{
const schur_poly *f1 = f.get_schur_poly();
const schur_poly *g1 = g.get_schur_poly();
if (f1->size() != g1->size()) return false;
if (f1->monoms.size() != g1->monoms.size()) return false;
VECTOR(schur_word)::const_iterator m_f = f1->monoms.begin();
VECTOR(schur_word)::const_iterator m_g = g1->monoms.begin();
for (; m_f != f1->monoms.end(); ++m_f, ++m_g)
if (*m_f != *m_g) return false;
VECTOR(ring_elem)::const_iterator c_f = f1->coeffs.begin();
VECTOR(ring_elem)::const_iterator c_g = g1->coeffs.begin();
for (; c_f != f1->coeffs.end(); ++c_f, ++c_g)
if (!coefficientRing->is_equal(*c_f, *c_g)) return false;
return true;
}
bool SchurRing2::get_scalar(const schur_poly *g, ring_elem &result) const
{
if (g->size() != 1) return false;
if (g->monoms.size() != 1) return false;
result = g->coeffs[0];
return true;
}
ring_elem SchurRing2::from_coeff(ring_elem a) const
{
schur_poly *f = new schur_poly;
if (!coefficientRing->is_zero(a))
{
f->coeffs.push_back(a);
f->monoms.push_back(1);
}
return ring_elem(f);
}
ring_elem SchurRing2::from_long(long n) const
{
ring_elem a = coefficientRing->from_long(n);
return from_coeff(a);
}
ring_elem SchurRing2::from_int(mpz_srcptr n) const
{
ring_elem a = coefficientRing->from_int(n);
return from_coeff(a);
}
bool SchurRing2::from_rational(mpq_srcptr q, ring_elem &result) const
{
ring_elem a;
bool ok = coefficientRing->from_rational(q, a);
if (not ok) return false;
result = from_coeff(a);
return true;
}
ring_elem SchurRing2::copy(const ring_elem f) const
{
const schur_poly *f1 = f.get_schur_poly();
schur_poly *g = new schur_poly;
g->coeffs.insert(g->coeffs.end(), f1->coeffs.begin(), f1->coeffs.end());
g->monoms.insert(g->monoms.end(), f1->monoms.begin(), f1->monoms.end());
return ring_elem(g);
}
ring_elem SchurRing2::invert(const ring_elem f) const
{
// This function is not relevant for this ring
return zero();
}
ring_elem SchurRing2::divide(const ring_elem f, const ring_elem g) const
{
// This function is not relevant for this ring
return zero();
}
void SchurRing2::syzygy(const ring_elem a,
const ring_elem b,
ring_elem &x,
ring_elem &y) const
{
// This function is not relevant for this ring
x = zero();
y = zero();
}
int SchurRing2::compare_partitions(const_schur_partition a,
const_schur_partition b) const
{
int len = a[0];
if (b[0] < len) len = b[0];
for (int i = 1; i < len; i++)
{
int cmp = a[i] - b[i];
if (cmp < 0) return LT;
if (cmp > 0) return GT;
}
int cmp = a[0] - b[0];
if (cmp < 0) return LT;
if (cmp > 0) return GT;
return EQ;
}
int SchurRing2::compare_elems(const ring_elem f, const ring_elem g) const
{
// assuming the monomials are sorted in the linear order on the partitions
// see SchurRing2::compare_partitions
auto f_it = f.get_schur_poly()->begin(),
f_end = f.get_schur_poly()->end();
auto g_it = g.get_schur_poly()->begin(),
g_end = g.get_schur_poly()->end();
for(; f_it!=f_end && g_it!=g_end; ++f_it, ++g_it) {
auto cmp = compare_partitions(f_it.getMonomial(), g_it.getMonomial());
if(cmp) return cmp;
}
return (f_it!=f_end)-(g_it!=g_end); // LT, EQ or GT
}
bool SchurRing2::promote_coeffs(const SchurRing2 *Rf,
const ring_elem f,
ring_elem &resultRE) const
{
// Assumption in use: Rf (ring of f) is a Schur ring, with coeff ring coeffRf
const schur_poly *f1 = f.get_schur_poly();
schur_poly *result = new schur_poly;
for (schur_poly::iterator i = f1->begin(); i != f1->end(); ++i)
{
if (i.getMonomial()[0] - 1 > nvars) continue;
ring_elem a;
if (!coefficientRing->promote(
Rf->getCoefficientRing(), i.getCoefficient(), a))
{
delete result;
resultRE = from_long(0);
return false;
}
result->appendTerm(a, i.getMonomial());
}
resultRE = ring_elem(result);
return true;
}
bool SchurRing2::lift_coeffs(const SchurRing2 *Sg,
const ring_elem f,
ring_elem &resultRE) const
{
const schur_poly *f1 = f.get_schur_poly();
schur_poly *result = new schur_poly;
for (schur_poly::iterator i = f1->begin(); i != f1->end(); ++i)
{
if (i.getMonomial()[0] - 1 > Sg->n_vars()) continue;
ring_elem a;
if (!coefficientRing->lift(
Sg->getCoefficientRing(), i.getCoefficient(), a))
{
delete result;
resultRE = from_long(0);
return false;
}
result->appendTerm(a, i.getMonomial());
}
resultRE = ring_elem(result);
return true;
}
bool SchurRing2::promote(const Ring *Rf,
const ring_elem f,
ring_elem &result) const
{
// Cases:
// 1. Rf is ZZ
// 2. Rf is coefficientRing
// 3. Rf is another SchurRing2
if (Rf == globalZZ)
{
from_coeff(Rf->promote(globalZZ, f, result));
return true;
}
else if (Rf == coefficientRing)
{
result = from_coeff(f);
return true;
}
else
{
const SchurRing2 *Sf = Rf->cast_to_SchurRing2();
if (Sf != 0)
{
if (coefficientRing == Sf->getCoefficientRing())
{
result = truncate(f);
return true;
}
return promote_coeffs(Sf, f, result);
}
}
return false;
}
bool SchurRing2::lift(const Ring *Rg,
const ring_elem f,
ring_elem &result) const
{
const schur_poly *f1 = f.get_schur_poly();
if (Rg == coefficientRing || Rg == globalZZ)
{
if (get_scalar(f1, result))
{
if (Rg == globalZZ)
return coefficientRing->lift(globalZZ, result, result);
return true;
}
}
else
{
const SchurRing2 *Sg = Rg->cast_to_SchurRing2();
if (Sg != 0)
{
if (coefficientRing == Sg->getCoefficientRing())
{
result = Sg->truncate(f);
return true;
}
return lift_coeffs(Sg, f, result);
}
}
return false;
}
ring_elem SchurRing2::negate(const ring_elem f) const
{
if (is_zero(f)) return f;
const schur_poly *f1 = f.get_schur_poly();
schur_poly *result = new schur_poly;
for (VECTOR(ring_elem)::const_iterator i = f1->coeffs.begin();
i != f1->coeffs.end();
++i)
result->coeffs.push_back(coefficientRing->negate(*i));
result->monoms.insert(
result->monoms.end(), f1->monoms.begin(), f1->monoms.end());
return ring_elem(result);
}
ring_elem SchurRing2::truncate(const ring_elem f) const
// assumption: f is a Schur poly over another Schur ring, with the SAME coeff
// ring
// each term is copied over, if the number of elements in the partition is <=
// n_vars()
{
if (is_zero(f)) return f;
const schur_poly *f1 = f.get_schur_poly();
schur_poly *result = new schur_poly;
for (schur_poly::iterator i = f1->begin(); i != f1->end(); ++i)
{
if (i.getMonomial()[0] - 1 > nvars) continue;
result->appendTerm(i.getCoefficient(), i.getMonomial());
}
return ring_elem(result);
}
ring_elem SchurRing2::add(const ring_elem f, const ring_elem g) const
{
if (is_zero(f)) return g;
if (is_zero(g)) return f;
const schur_poly *f1 = f.get_schur_poly();
const schur_poly *g1 = g.get_schur_poly();
schur_poly *result = new schur_poly;
schur_poly::iterator i = f1->begin();
schur_poly::iterator j = g1->begin();
schur_poly::iterator iend = f1->end();
schur_poly::iterator jend = g1->end();
bool done = false;
while (!done)
{
int cmp = compare_partitions(i.getMonomial(), j.getMonomial());
switch (cmp)
{
case LT:
result->appendTerm(j.getCoefficient(), j.getMonomial());
++j;
if (j == jend)
{
result->append(i, iend);
done = true;
}
break;
case GT:
result->appendTerm(i.getCoefficient(), i.getMonomial());
++i;
if (i == iend)
{
result->append(j, jend);
done = true;
}
break;
case EQ:
ring_elem c =
coefficientRing->add(i.getCoefficient(), j.getCoefficient());
if (!coefficientRing->is_zero(c))
result->appendTerm(c, i.getMonomial());
++j;
++i;
if (j == jend)
{
result->append(i, iend);
done = true;
}
else
{
if (i == iend)
{
result->append(j, jend);
done = true;
}
}
break;
}
}
return ring_elem(result);
}
ring_elem SchurRing2::subtract(const ring_elem f, const ring_elem g) const
{
ring_elem h = negate(g);
return add(f, h);
}
schur_poly *SchurRing2::mult_by_coefficient(ring_elem a,
const schur_poly *f) const
{
schur_poly *result = new schur_poly;
VECTOR(ring_elem)::iterator c_result;
for (VECTOR(ring_elem)::const_iterator c_f = f->coeffs.begin();
c_f != f->coeffs.end();
++c_f)
result->coeffs.push_back(coefficientRing->mult(a, *c_f));
result->monoms.insert(
result->monoms.end(), f->monoms.begin(), f->monoms.end());
return result;
}
ring_elem SchurRing2::mult(const ring_elem f, const ring_elem g) const
{
ring_elem resultRE;
const schur_poly *f1 = f.get_schur_poly();
const schur_poly *g1 = g.get_schur_poly();
ring_elem a;
if (get_scalar(f1, a))
{
return ring_elem(mult_by_coefficient(a, g1));
// In this case, do a simple multiplication
}
else if (get_scalar(g1, a))
{
return ring_elem(mult_by_coefficient(a, f1));
}
else
{
// use the poly heap
schur_poly_heap H(this);
for (schur_poly::iterator i = f1->begin(); i != f1->end(); ++i)
for (schur_poly::iterator j = g1->begin(); j != g1->end(); ++j)
{
ring_elem c =
coefficientRing->mult(i.getCoefficient(), j.getCoefficient());
ring_elem r = const_cast<SchurRing2 *>(this)->mult_terms(
i.getMonomial(), j.getMonomial());
H.add(ring_elem(mult_by_coefficient(c, r.get_schur_poly())));
}
return H.value();
}
}
void toVarpower(const_schur_partition a, intarray &result)
{
int len = a[0];
int *result_vp = result.alloc(2 * len);
int *orig_result_vp = result_vp;
result_vp++;
if (len > 1)
{
int v = a[1];
int e = 1;
for (int i = 2; i < len; i++)
{
if (v == a[i])
e++;
else
{
*result_vp++ = v;
*result_vp++ = e;
v = a[i];
e = 1;
}
}
*result_vp++ = v;
*result_vp++ = e;
}
int newlen = static_cast<int>(result_vp - orig_result_vp);
*orig_result_vp = newlen;
result.shrink(newlen);
}
engine_RawArrayPairOrNull SchurRing2::list_form(const Ring *coeffR,
const ring_elem f) const
{
if (coeffR != coefficientRing)
{
ERROR("expected coefficient ring of Schur ring");
return 0;
}
const schur_poly *f1 = f.get_schur_poly();
int n = static_cast<int>(f1->size()); // this is here because the lengths of
// arrays for M3 front end use int as
// length field.
engine_RawMonomialArray monoms =
GETMEM(engine_RawMonomialArray, sizeofarray(monoms, n));
engine_RawRingElementArray coeffs =
GETMEM(engine_RawRingElementArray, sizeofarray(coeffs, n));
monoms->len = n;
coeffs->len = n;
engine_RawArrayPair result = newitem(struct engine_RawArrayPair_struct);
result->monoms = monoms;
result->coeffs = coeffs;
// Loop through the terms
intarray vp;
schur_poly::iterator i = f1->begin();
for (int next = 0; next < n; ++i, ++next)
{
coeffs->array[next] =
RingElement::make_raw(coefficientRing, i.getCoefficient());
toVarpower(i.getMonomial(), vp);
monoms->array[next] = Monomial::make(vp.raw());
vp.shrink(0);
}
return result;
}
ring_elem SchurRing2::eval(const RingMap *map,
const ring_elem f,
int first_var) const
{
// Should we allow ring maps to other Schur rings? No others are that well
// defined...
// Use promote and lift for those instead?
return map->get_ring()->zero();
}
/////// Littlewood-Richardson algorithm /////////////////////////
// FLAG: put in a reference to the paper/algorithm being used here.
void SchurRing2::SMinitialize(int n,
int maxwt) // FLAG: only called with maxwt==0
{
SMmaxrows = n;
SMmaxweight = maxwt; // need this?
SMtab.initialize(SMmaxrows, SMmaxweight);
SMfilled.initialize(SMmaxrows, SMmaxweight);
SMcurrent = 0;
SMfinalwt = 0;
SMtab.p = new int[nvars + 1]; // FLAG: is this correct? use schur_word?, what
// about nvars==-1
for (int i = 0; i <= nvars; i++) SMtab.p[i] = 0;
SMheap = new schur_poly_heap(this);
}
void SchurRing2::SMbounds(int &lo, int &hi)
{
int i, k;
int x = SMfilled.xloc[SMcurrent];
int y = SMfilled.yloc[SMcurrent];
// First set the high bound, using info from the "one to the right"
// in the reverse lex filled skew tableau.
if (y == SMfilled.p[x]) // There is not one to the right
{
hi = SMmaxrows;
for (k = 1; k <= SMmaxrows; k++)
if (SMtab.p[k] == 0)
{
hi = k;
break;
}
}
else // note that the case SMcurrent==1 will be handled
{ // in the previous statement.
hi = SMtab.xloc[SMcurrent - 1];
}
// Now we set the lo bound, using info from the "one above"
if (x == 1 || y <= SMfilled.lambda[x - 1])
lo = 1; // There is not one above
else
{
int above = SMcurrent - SMfilled.p[x] + SMfilled.lambda[x - 1];
int xabove = SMtab.xloc[above];
int yabove = SMtab.yloc[above];
for (i = xabove + 1; i <= hi; i++)
if (SMtab.p[i] < yabove) break;
lo = i;
}
}
void SchurRing2::SMsetPartitionLength(schur_word *p, int SMmaxrows)
{
int i;
for (i = 1; i <= SMmaxrows; i++)
if (p[i] == 0) break;
p[0] = i;
}
void SchurRing2::SM()
{
int lo, hi;
if (SMcurrent == SMfinalwt)
{
// partition is to be output
SMsetPartitionLength(SMtab.p, SMmaxrows);
SMappendTerm(SMtab.p);
return;
}
SMcurrent++;
SMbounds(lo, hi);
int this_one = LARGE_NUMBER; // larger than any entry of SMtab: SMfinalwt+1
// should work...
int last_one;
for (int i = lo; i <= hi; i++)
{
last_one = this_one;
this_one = SMtab.p[i];
if (last_one > this_one)
{
SMtab.p[i]++;
SMtab.xloc[SMcurrent] = i;
SMtab.yloc[SMcurrent] = SMtab.p[i];
SM();
SMtab.p[i]--;
}
}
SMcurrent--;
}
void SchurRing2::SMappendTerm(const_schur_partition f)
{
// make a poly, and insert it into the heap
schur_poly * val = new schur_poly;
val->appendTerm(coefficientRing->one(), f);
SMheap->add(ring_elem(val));
}
ring_elem SchurRing2::skew_schur(const_schur_partition lambda,
const_schur_partition p)
{
SMcurrent = 0;
SMfinalwt = 0;
for (int i = 1; i < p[0]; i++) SMfinalwt += p[i];
for (int i = 1; i < lambda[0]; i++) SMfinalwt -= lambda[i];
SMmaxrows = p[0] - 1; // this is the number of elements in the partition p
if (nvars != -1 && SMmaxrows > nvars) SMmaxrows = nvars;
delete[] SMtab
.p; // FLAG: should use gc for this? or not use it, but not both!
SMtab.p = new int[SMmaxrows + 1]; // FLAG: should use gc for this? or not
// use it, but not both!
for (int i = 0; i <= SMmaxrows; i++) SMtab.p[i] = 0;
SMtab.wt = SMfinalwt;
SMtab.resize(SMfinalwt);
SMfilled.resize(SMfinalwt);
// lambda and p should not be modified in the following call
SMfilled.fill(const_cast<schur_partition>(lambda),
const_cast<schur_partition>(
p)); // FLAG:fill should take const arguments...
lambda++; // FLAG: why is this here?
p++; // FLAG: why is this here?
SM();
return SMheap->value(); // resets itself back to new
}
ring_elem SchurRing2::mult_terms(const_schur_partition a,
const_schur_partition b)
{
int maxsize = (a[0] - 1 + b[0] - 1) + 1; // this is the max number of
// elements in the output partition,
// plus one
schur_partition lambda = ALLOCATE_EXPONENTS(sizeof(schur_word) * maxsize);
schur_partition p = ALLOCATE_EXPONENTS(sizeof(schur_word) * maxsize);
// Second: make the skew partition (note: r,s>=1)
// this is: if a = r+1 a1 a2 ... ar
// b = s+1 b1 b2 ... bs
// p is:
// (r+s+1) b1+a1 b1+a2 ... b1+ar b1 b2 ... bs
// lambda is:
// (r+1) b1 b1 ... b1 0 0 ... 0
int r = a[0] - 1;
int s = b[0] - 1;
int c = b[1];
assert(r + s + 1 == maxsize);
for (int i = 1; i <= r; i++)
{
assert(i < maxsize);
p[i] = c + a[i];
lambda[i] = c;
}
for (int i = r + 1; i < r + s + 1; i++)
{
assert(i < maxsize);
p[i] = b[i - r];
lambda[i] = 0;
}
p[0] = r + s + 1;
lambda[0] = r + 1;
return skew_schur(lambda, p);
}
/////////////////////////////////////////////////////////////////
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|