1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
// Copyright 2017 Michael E. Stillman
#include <cstdio>
#include <string>
#include <iostream>
#include <memory>
#include <gtest/gtest.h>
#include "schreyer-resolution/res-moninfo.hpp"
TEST(ResMonoidDense, create)
{
ResMonoidDense M1(4,
std::vector<int>{1, 1, 1, 1},
std::vector<int>{},
MonomialOrderingType::GRevLex);
ResMonoidDense M2(4,
std::vector<int>{1, 2, 3, 4},
std::vector<int>{1, 1, 1, 1, 1, 1, 0, 0},
MonomialOrderingType::Weights);
ResMonoidDense M3(4,
std::vector<int>{1, 1, 1, 1},
std::vector<int>{},
MonomialOrderingType::Lex);
EXPECT_EQ(4, M1.n_vars());
std::vector<res_monomial_word> monomspace(100);
EXPECT_EQ(100, monomspace.size());
}
TEST(ResMonoidDense, encodeDecode)
{
ResMonoidDense M(4,
std::vector<int>{1, 1, 1, 1},
std::vector<int>{},
MonomialOrderingType::GRevLex);
// Loop through a number of exponent vectors, encode, then decode.
for (int i = 0; i < M.n_vars(); i++)
for (int j = i; j < M.n_vars(); j++)
{
int exp[]{0, 0, 0, 0};
exp[i]++;
exp[j]++;
int mon[]{0, 0, 0, 0, 0, 0, 0, 0};
// first encode
M.from_exponent_vector(exp, 3, mon);
// now decode
component_index comp;
int exp2[]{0, 0, 0, 0};
M.to_exponent_vector(mon, exp2, comp);
EXPECT_EQ(3, comp);
for (int k = 0; k < M.n_vars(); k++) EXPECT_EQ(exp[k], exp2[k]);
std::cout << "i=" << i << " j=" << j << " mon = ";
M.dump(std::cout, mon);
std::cout << std::endl;
}
}
TEST(ResMonoidSparse, encodeDecode)
{
ResMonoidSparse M(4,
std::vector<int>{1, 1, 1, 1},
std::vector<int>{},
MonomialOrderingType::GRevLex);
// Loop through a number of exponent vectors, encode, then decode.
for (int i = 0; i < M.n_vars(); i++)
for (int j = i; j < M.n_vars(); j++)
{
int exp[]{0, 0, 0, 0};
int mon[]{0, 0, 0, 0, 0, 0, 0, 0};
component_index comp;
int exp2[]{0, 0, 0, 0};
int mon2[]{0, 0, 0, 0, 0, 0, 0, 0};
exp[i]++;
exp[j]++;
// first encode
M.from_exponent_vector(exp, 3, mon);
// now decode
M.to_exponent_vector(mon, exp2, comp);
EXPECT_EQ(3, comp);
for (int k = 0; k < M.n_vars(); k++) EXPECT_EQ(exp[k], exp2[k]);
// now re-encode
M.from_exponent_vector(exp2, 3, mon2);
EXPECT_TRUE(M.is_equal(mon, mon2));
// now display
std::cout << "i=" << i << " j=" << j << " mon = ";
M.dump(std::cout, mon);
std::cout << std::endl;
}
}
TEST(ResMonoidDense, mult)
{
ResMonoidDense M(4,
std::vector<int>{1, 1, 1, 1},
std::vector<int>{},
MonomialOrderingType::GRevLex);
int exp1[]{0, 0, 0, 0};
int exp2[]{0, 1, 0, 3};
int exp3[]{0, 0, 0, 0};
int mon1[]{0, 0, 0, 0, 0, 0};
int mon2[]{0, 0, 0, 0, 0, 0, 0, 0, 0};
int mon3[]{0, 0, 0, 0, 0, 0, 0, 0, 0};
int mon[]{0, 0, 0, 0, 0, 0, 0, 0, 0};
int comp;
M.from_exponent_vector(exp1, 0, mon1);
M.from_exponent_vector(exp2, 0, mon2);
M.mult(mon1, mon2, mon);
M.to_exponent_vector(mon, exp3, comp);
EXPECT_EQ(6, M.monomial_size(mon1));
EXPECT_EQ(6, M.monomial_size(mon2));
EXPECT_EQ(6, M.monomial_size(mon));
for (int i = 0; i < M.n_vars(); i++)
for (int j = i; j < M.n_vars(); j++)
for (int k = 0; k < M.n_vars(); k++)
{
int exp1[]{0, 0, 0, 0};
exp1[i]++;
exp1[j]++;
int exp2[]{0, 0, 0, 0};
exp2[k]++;
M.from_exponent_vector(exp1, 0, mon1);
M.from_exponent_vector(exp2, 0, mon2);
M.mult(mon1, mon2, mon);
M.mult(mon1, mon2, mon3);
EXPECT_TRUE(M.is_equal(mon, mon3));
M.to_exponent_vector(mon, exp3, comp);
int exp3a[]{0, 0, 0, 0};
exp3a[i]++;
exp3a[j]++;
exp3a[k]++;
for (int ell = 0; ell < M.n_vars(); ell++)
EXPECT_EQ(exp3[ell], exp3a[ell]);
EXPECT_EQ(M.monomial_size(mon), M.monomial_size(mon1));
EXPECT_EQ(M.monomial_size(mon), M.monomial_size(mon2));
}
}
TEST(ResMonoidSparse, mult)
{
ResMonoidSparse M(4,
std::vector<int>{1, 1, 1, 1},
std::vector<int>{},
MonomialOrderingType::GRevLex);
int exp1[]{0, 0, 0, 0};
int exp2[]{0, 1, 0, 3};
int exp3[]{0, 0, 0, 0};
int mon1[]{0, 0, 0, 0, 0, 0};
int mon2[]{0, 0, 0, 0, 0, 0, 0, 0, 0};
int mon3[]{0, 0, 0, 0, 0, 0, 0, 0, 0};
int mon[]{0, 0, 0, 0, 0, 0, 0, 0, 0};
int comp;
M.from_exponent_vector(exp1, 0, mon1);
M.from_exponent_vector(exp2, 0, mon2);
M.mult(mon1, mon2, mon);
M.to_exponent_vector(mon, exp3, comp);
EXPECT_EQ(3, M.monomial_size(mon1));
EXPECT_EQ(7, M.monomial_size(mon2));
EXPECT_EQ(7, M.monomial_size(mon));
for (int i = 0; i < M.n_vars(); i++)
for (int j = i; j < M.n_vars(); j++)
for (int k = 0; k < M.n_vars(); k++)
{
int exp1[]{0, 0, 0, 0};
exp1[i]++;
exp1[j]++;
int exp2[]{0, 0, 0, 0};
exp2[k]++;
M.from_exponent_vector(exp1, 0, mon1);
M.from_exponent_vector(exp2, 0, mon2);
M.mult(mon1, mon2, mon);
M.mult(mon1, mon2, mon3);
EXPECT_TRUE(M.is_equal(mon, mon3));
M.to_exponent_vector(mon, exp3, comp);
int exp3a[]{0, 0, 0, 0};
exp3a[i]++;
exp3a[j]++;
exp3a[k]++;
for (int ell = 0; ell < M.n_vars(); ell++)
EXPECT_EQ(exp3[ell], exp3a[ell]);
EXPECT_EQ(M.monomial_size(mon),
M.monomial_size(mon1) + M.monomial_size(mon2) - 3);
}
}
TEST(ResMonoidDense, encode5) {}
TEST(ResMonoidDense, encode6) {}
TEST(ResMonoidDense, concatenateResMonoidDense) {}
TEST(ResMonoidDense, outOfRange) {}
TEST(ResMonoidDense, encodeBoundary) {}
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e/unit-tests check "
// indent-tabs-mode: nil
// End:
|