File: RingTest.hpp

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (285 lines) | stat: -rw-r--r-- 7,550 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// Copyright 2013 Michael E. Stillman

#ifndef __ring_test_hpp__
#define __ring_test_hpp__

#include <cstdio>
#include <string>
#include <iostream>
//#include <sstream>
#include <memory>
#include <gtest/gtest.h>
//#include <mpfr.h>

#include "interface/random.h"
#include "ZZ.hpp"
#include "exceptions.hpp"

const int ntrials = 100;  // 5000

template <typename T>
std::istream& fromStream(std::istream& i,
                         const T& R,
                         typename T::ElementType& result);

template <typename T>
bool fromStream(std::istream& i, const T& R, ring_elem& result);

template <typename T>
std::string ringName(const T& R)
{
  buffer o;
  R.text_out(o);
  std::string result = o.str();
  return result;
}

template <typename RingType>
ring_elem getElement(const RingType& R, int index);

template <typename RingType>
class RingElementGenerator
{
 public:
  RingElementGenerator(const RingType& R) : mRing(R), mNext(0) {}
  ring_elem nextElement() { return getElement<RingType>(mRing, ++mNext); }
  void reset() { mNext = 0; }
 private:
  const RingType& mRing;
  int mNext;
};

template <typename T>
void testRingCoercions(const T* R, int ntrials)
{
  // from int
  // from mpz
  // from rational
}
template <typename T>
void testRingNegate(const T* R, int ntrials)
{
  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      // test: (-a) + (a) == a
      ring_elem a = gen.nextElement();
      ring_elem b = R->negate(a);
      ring_elem c = R->add(a, b);
      EXPECT_TRUE(R->is_zero(c));
    }
}
template <typename T>
void testRingAdd(const T* R, int ntrials)
{
  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      // test: (a+b) + (-b) == a
      ring_elem a = gen.nextElement();
      ring_elem b = gen.nextElement();
      ring_elem c = R->add(a, b);
      ring_elem d = R->negate(b);
      ring_elem e = R->add(c, d);  // should be a
      EXPECT_TRUE(R->is_equal(e, a));
    }
}
template <typename T>
void testRingSubtract(const T* R, int ntrials)
{
  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      // test: (a-b) + (b) == a
      ring_elem a = gen.nextElement();
      ring_elem b = gen.nextElement();
      ring_elem c = R->subtract(a, b);
      ring_elem e = R->add(c, b);
      EXPECT_TRUE(R->is_equal(e, a));
    }
}
template <typename T>
void testRingDivide(const T* R, int ntrials)
{
  auto zero = R->zero();
  auto a = R->from_long(3);
  EXPECT_ANY_THROW(R->divide(a, zero));

  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      // test: (a*b) // b == a
      ring_elem a = gen.nextElement();
      ring_elem b = gen.nextElement();
      ring_elem c = R->mult(a, b);
      if (R->is_zero(b))
        EXPECT_TRUE(R->is_zero(c));
      else
        {
          ring_elem d = R->divide(c, b);
          EXPECT_TRUE(R->is_equal(d, a));
        }
    }
}

template <typename T>
void testRingAxioms(const T* R, int ntrials)
{
  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      ring_elem a = gen.nextElement();
      ring_elem b = gen.nextElement();
      ring_elem c = gen.nextElement();

      // Test commutativity
      // test: a*b = b*a
      // test: a+b == b+a
      ring_elem d = R->add(a, b);
      ring_elem e = R->add(b, a);
      EXPECT_TRUE(R->is_equal(d, e));
      d = R->mult(a, b);
      e = R->mult(b, a);
      EXPECT_TRUE(R->is_equal(d, e));

      // Test associativity
      // test: a+(b+c) == (a+b)+c
      // test: a*(b*c) == (a*b)*c
      d = R->add(a, R->add(b, c));
      e = R->add(R->add(a, b), c);
      EXPECT_TRUE(R->is_equal(d, e));
      d = R->mult(a, R->mult(b, c));
      e = R->mult(R->mult(a, b), c);
      EXPECT_TRUE(R->is_equal(d, e));

      // Test distributivity
      // test: a*(b+c) == a*b + a*c
      d = R->mult(a, R->add(b, c));
      e = R->add(R->mult(a, b), R->mult(a, c));
      EXPECT_TRUE(R->is_equal(d, e));
    }
}
template <typename T>
void testRingPower(const T* R, int ntrials)
{
  mpz_t gmp1;
  mpz_init(gmp1);
  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      ring_elem a = gen.nextElement();
      // TODO: what should the answer here be?
      // EXPECT_TRUE(R->is_equal(R->power(a, 0), R->one())); // 0^0 == 1 too?
      EXPECT_TRUE(R->is_equal(R->power(a, 1), a));

      int e1 = rawRandomInt(10) + 1;
      int e2 = rawRandomInt(10) + 1;
      // std::cout << "(" << e1 << "," << e2 << ")" << std::endl;
      ring_elem b = R->power(a, e1);
      ring_elem c = R->power(a, e2);
      ring_elem d = R->power(a, e1 + e2);
      EXPECT_TRUE(R->is_equal(R->mult(b, c), d));

      // Make sure that powers via mpz work (at least for small exponents)
      mpz_set_si(gmp1, e1);
      ring_elem b1 = R->power(a, gmp1);
      EXPECT_TRUE(R->is_equal(b1, b));
    }
  mpz_clear(gmp1);
}
template <typename T>
void testRingGCD(const T* R, int ntrials)
{
  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      ring_elem a = gen.nextElement();
      ring_elem b = gen.nextElement();

      // (a // gcd(a,b) == 0, b // gcd(a,b) == 0,
      ring_elem c = R->gcd(a, b);
      ring_elem u, v;
      ring_elem d = R->gcd_extended(a, b, u, v);

      EXPECT_TRUE(R->is_equal(c, d));
      EXPECT_TRUE(R->is_equal(c, R->add(R->mult(a, u), R->mult(b, v))));
      EXPECT_TRUE(R->is_equal(a, R->mult(R->divide(a, c), c)));
    }
}
template <typename T>
void testRingRemainder(const T* R, int ntrials)
{
  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      ring_elem a = gen.nextElement();
      ring_elem b = gen.nextElement();

#if 0
      ring_elem c = R->remainder(a, R->zero()); // FAILS!!
      EXPECT_TRUE(R->is_equal(c,a));
#endif

      ring_elem r = R->remainder(a, b);
      ring_elem q = R->quotient(a, b);
      ring_elem r1, q1;
      r1 = R->remainderAndQuotient(a, b, q1);

      EXPECT_TRUE(R->is_equal(r, r1));
      EXPECT_TRUE(R->is_equal(q, q1));
      ring_elem a1 = R->add(R->mult(q, b), r);
      EXPECT_TRUE(R->is_equal(a, a1));
    }
}
template <typename T>
void testRingSyzygy(const T* R, int ntrials)
{
  RingElementGenerator<T> gen(*R);
  for (int i = 0; i < ntrials; i++)
    {
      ring_elem u, v;
      ring_elem a = gen.nextElement();
      ring_elem b = gen.nextElement();
      if (R->is_zero(b)) continue;

      // special cases (note: b != 0 for rest of routine)
      // syzygy(0,b) returns (1,0)
      R->syzygy(R->zero(), b, u, v);
      EXPECT_TRUE(R->is_equal(u, R->one()));
      EXPECT_TRUE(R->is_equal(v, R->zero()));
      // syzygy(a,1) returns (1,-a)
      R->syzygy(a, R->one(), u, v);
      EXPECT_TRUE(R->is_equal(u, R->one()));
      EXPECT_TRUE(R->is_equal(v, R->negate(a)));
      // syzygy(a,-1) returns (1,a)
      R->syzygy(a, R->minus_one(), u, v);
      EXPECT_TRUE(R->is_equal(u, R->one()));
      EXPECT_TRUE(R->is_equal(v, a));

      R->syzygy(a, b, u, v);
      ring_elem result = R->add(R->mult(a, u), R->mult(b, v));
#if 0
      buffer o;
      o << "a=";
      R->elem_text_out(o,a);
      o << " b=";
      R->elem_text_out(o,b);
      o << " u=";
      R->elem_text_out(o,u);
      o << " v=";
      R->elem_text_out(o,v);
      std::cout << o.str() << std::endl;
#endif
      EXPECT_TRUE(R->is_zero(result));
    }

  // over ZZ:
  // syzygy(a,b) returns (b/c, -a/c), where c = +- gcd(a,b), with same sign as b
}

#endif

// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e/unit-tests check  "
// indent-tabs-mode: nil
// End: