1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
-- Copyright 1995-2002 by Daniel R. Grayson and Michael Stillman
needs "max.m2" -- infinity
needs "modules2.m2"
protect symbol Order
-----------------------------------------------------------------------------
-- Local utilities
-----------------------------------------------------------------------------
recipN := (n, wts, f) -> (
-- n is a positive integer
-- wts is a weight vector
-- f is a polynomial of the form 1 plus terms of positive weight, which we verify
-- we compute the terms of the expansion of 1/f of weight less than n
if n <= 0 then error "expected a positive integer";
if part(, 0, wts, f) != 1 then error "expected a polynomial of the form 1 plus terms of positive weight";
g := 1_(ring f); -- g always has the form 1 plus terms weight 1,2,...,m-1
m := 1; -- 1-f*g always has terms of wt m and higher
tr := h -> part(, m-1, wts, h);
while m < n do (
m = 2*m;
g = g + tr(g * (1 - tr(g * tr f)));
);
if m === n then g else part(, n-1, wts, g))
-- truncate f * g^e
truncatePower := (f, g, e, tr) -> fold(0..e-1, f, (i, r) -> tr(r * g))
-- truncate a power series element f given as an expression of type
-- Divide{RingElement, Product{Power{1-T_i, ZZ}, ...}}.
truncateSeries = (n, wts, f) -> (
if n === infinity then return f;
tr := h -> part(, n-1, wts, h);
if not instance(f, Divide) then return tr f;
num := tr numerator f;
if num == 0 then return 0_(ring num);
den := denominator f; -- a Product of Power expressions
(lo, hi) := weightRange(wts, num);
fold(toList den, num,
(pow, r) -> truncatePower(r, recipN(n-lo, wts, pow#0), pow#1, tr)))
-----------------------------------------------------------------------------
-- helpers for Hilbert methods
-----------------------------------------------------------------------------
-- also used in betti.m2
hilbertFunctionRing = memoize(() -> QQ(monoid [getSymbol "i"]))
hilbertFunctionQ = method()
hilbertFunctionQ ZZ := n -> (
if n === 0 then 1_(hilbertFunctionRing())
else (
i := (hilbertFunctionRing())_0;
(1/n) * (n+i) * hilbertFunctionQ(n-1)))
hilbertFunctionQ(ZZ, ZZ) := memoize(
(n, d) -> (
if d === 0 then hilbertFunctionQ(n)
else (
i := (hilbertFunctionRing())_0;
substitute(hilbertFunctionQ(n), {i => i+d}))))
-----------------------------------------------------------------------------
-- heft
-----------------------------------------------------------------------------
-- TODO: where should this go?
heft = method()
heft Ring :=
heft Monoid := R -> if (o := options R) =!= null and o.?Heft then o.Heft
heft PolynomialRing := R -> heft R.FlatMonoid
heft QuotientRing := R -> heft ambient R
-----------------------------------------------------------------------------
-- poincare
-----------------------------------------------------------------------------
-- see the comment in the documentation for (degree, Ideal) about what this means when M is not homogeneous
poincare = method(TypicalValue => RingElement)
poincare Ring := R -> poincare module R
poincare Ideal := I -> poincare comodule I
poincare Module := M -> (
computation := (cacheValue symbol poincare) (M -> runHooks((poincare, Module), M));
if (P := computation M) =!= null then return P;
error("no applicable strategy for computing poincare over ", toString ring M))
addHook((poincare, Module), Strategy => Default, M -> (
new degreesRing M from rawHilbert raw leadTerm gb -* presentation cokernel ?? *- presentation M))
-- manually installs the numerator of the reduced Hilbert series for the module
storefuns#poincare = method()
storefuns#poincare(Ideal, RingElement) := (I, hf) -> storefuns#poincare(comodule I, hf)
storefuns#poincare(Matrix, RingElement) := (m, hf) -> storefuns#poincare(cokernel m, hf)
storefuns#poincare(Module, RingElement) := (M, hf) -> M.cache.poincare = substitute(hf, degreesRing M)
-- TODO: deprecate this
installHilbertFunction = storefuns#poincare
-----------------------------------------------------------------------------
-- pdim, dim, degree, multidegree, length
-----------------------------------------------------------------------------
pdim Module := M -> length resolution minimalPresentation M
dim Ideal := I -> dim comodule I
dim Module := M -> if (c := codim M) === infinity then -1 else dim ring M - c
degree Ring := R -> degree module R
degree Ideal := I -> degree comodule I
degree Module := M -> (
computation := (cacheValue symbol degree) (M -> runHooks((degree, Module), M));
if (d := computation M) =!= null then return d;
error("no applicable strategy for computing degree of modules over ", toString ring M))
addHook((degree, Module), Strategy => Default, M -> (
R := ring M;
if (hft := heft R) === null then error "degree: no heft vector defined";
T := degreesRing 1;
A := degreesRing R;
n := degreeLength R;
hn := poincare M;
if n === 0 then return lift(hn, ZZ);
-- this assigns a privileged role to the heft vector, which we need to investigate
to1 := map(T, A, apply(hft, i -> T_{i}));
hn = to1 hn;
if hn == 0 then return 0;
h := 1 - T_0;
while hn % h == 0 do hn = hn // h;
ev := map(ZZ, T, {1});
ev hn))
multidegree Ring := R -> multidegree module R
multidegree Ideal := I -> multidegree comodule I
multidegree Module := M -> (
computation := (cacheValue symbol multidegree) (M -> runHooks((multidegree, Module), M));
if (d := computation M) =!= null then return d;
error("no applicable strategy for computing multidegree of modules over ", toString ring M))
addHook((multidegree, Module), Strategy => Default, M -> (
A := degreesRing M;
if (c := codim M) === infinity then return 0_A;
onem := map(A, A, apply(generators A, t -> 1 - t));
part(c, numgens A:1, onem numerator poincare M))
)
length Module := ZZ => M -> (
computation := (cacheValue symbol length) (M -> runHooks((length, Module), M));
if (n := computation M) =!= null then return n;
error("no applicable strategy for computing length of modules over ", toString ring M))
addHook((length, Module), Strategy => Default, M -> (
if not isHomogeneous M then notImplemented();
if dim M > 0 then infinity else degree M))
-----------------------------------------------------------------------------
-- ProjectiveHilbertPolynomial type declaration
-----------------------------------------------------------------------------
ProjectiveHilbertPolynomial = new Type of HashTable
ProjectiveHilbertPolynomial.synonym = "projective Hilbert polynomial"
-- printing
expression ProjectiveHilbertPolynomial := h -> sum(sort pairs h, (n, c) -> c * new Subscript from {"P", n})
net ProjectiveHilbertPolynomial := net @@ expression
texMath ProjectiveHilbertPolynomial := texMath @@ expression
-- basic constructor
projectiveHilbertPolynomial = method(TypicalValue => ProjectiveHilbertPolynomial)
projectiveHilbertPolynomial ZZ := n -> new ProjectiveHilbertPolynomial from { n => 1 }
projectiveHilbertPolynomial(ZZ, ZZ) := memoize(
(n, d) -> new ProjectiveHilbertPolynomial from (
if d <= 0
then apply(min(-d+1, n+1), j -> n-j => (-1)^j * binomial(-d, j))
else apply(n+1, j -> n-j => binomial(d-1+j, j))))
-- arithmetic ops
-- TODO: how can we abstract away this section?
P0 := projectiveHilbertPolynomial 0
ProjectiveHilbertPolynomial == ProjectiveHilbertPolynomial := Boolean => (h, k) -> h === k
ProjectiveHilbertPolynomial + ProjectiveHilbertPolynomial := ProjectiveHilbertPolynomial => (h, k) -> merge(h, k, continueIfZero @@ plus)
ProjectiveHilbertPolynomial - ProjectiveHilbertPolynomial := ProjectiveHilbertPolynomial => (h, k) -> h + -k
- ProjectiveHilbertPolynomial := ProjectiveHilbertPolynomial => h -> applyValues(h, minus)
ZZ * ProjectiveHilbertPolynomial := ProjectiveHilbertPolynomial => (b, h) -> (
if b === 0 then new ProjectiveHilbertPolynomial from {} else if b === 1 then h else applyValues(h, c -> b * c))
ProjectiveHilbertPolynomial * ZZ := ProjectiveHilbertPolynomial => (h, b) -> b * h
ProjectiveHilbertPolynomial + ZZ := ProjectiveHilbertPolynomial => (h, n) -> h + n * P0
ZZ + ProjectiveHilbertPolynomial := ProjectiveHilbertPolynomial => (n, h) -> h + n * P0
ProjectiveHilbertPolynomial - ZZ := ProjectiveHilbertPolynomial => (h, n) -> h - n * P0
ZZ - ProjectiveHilbertPolynomial := ProjectiveHilbertPolynomial => (n, h) -> -h + n * P0
ProjectiveHilbertPolynomial == ZZ := Boolean => (h, n) -> h === n * P0
ZZ == ProjectiveHilbertPolynomial := Boolean => (n, h) -> h === n * P0
-- evaluation
ProjectiveHilbertPolynomial ZZ := (P, i) -> sum(pairs P, (n, c) -> c * binomial(n + i, n))
-- other methods
euler ProjectiveHilbertPolynomial := P -> P(0)
dim ProjectiveHilbertPolynomial := P -> if #P === 0 then -1 else max keys P
degree ProjectiveHilbertPolynomial := P -> if #P === 0 then 0 else P#(dim P)
-- differentiation
diff(ProjectiveHilbertPolynomial, ZZ) := ProjectiveHilbertPolynomial => (P,i) -> (
new ProjectiveHilbertPolynomial from select(apply(pairs P, (n, c) -> (n - i, c)), (n, c) -> n >= 0))
diff ProjectiveHilbertPolynomial := ProjectiveHilbertPolynomial => P -> diff(P, 1)
-----------------------------------------------------------------------------
-- hilbertPolynomial
-----------------------------------------------------------------------------
hilbertPolynomial = method(TypicalValue => ProjectiveHilbertPolynomial, Options => { Projective => true })
hilbertPolynomial Ring := opts -> R -> hilbertPolynomial(module R, opts)
hilbertPolynomial Ideal := opts -> I -> hilbertPolynomial(comodule I, opts)
hilbertPolynomial Module := opts -> M -> (
HP := runHooks((hilbertPolynomial, Module), (opts, M));
if HP =!= null then return HP;
error("no applicable strategy for computing Hilbert polynomial over ", toString ring M))
addHook((hilbertPolynomial, Module), Strategy => Default, (opts, M) -> (
R := ring M;
if not isHomogeneous M then error "hilbertPolynomial: expected a homogeneous module";
if degreeLength R != 1 then error "hilbertPolynomial: expected a singly graded ring";
if not all(degrees R, d -> d === {1}) then error "hilbertPolynomial: expected a ring whose variables all have degree 1";
--
n := numgens R - 1;
p := pairs standardForm poincare M;
if opts.Projective then (
if #p === 0 then new ProjectiveHilbertPolynomial from {}
else sum(p, (d, c) -> (
if #d === 0 then d = 0 else d = d#0;
c * projectiveHilbertPolynomial(n, -d))))
else (
if #p === 0 then 0_(hilbertFunctionRing())
else sum(p, (d, c) -> (
if #d === 0 then d = 0 else d = d#0;
c * hilbertFunctionQ(n, -d)))))
)
-----------------------------------------------------------------------------
-- euler, eulers, genus, genera
-----------------------------------------------------------------------------
euler Ring := R -> euler module R
euler Module := M -> euler hilbertPolynomial M
eulers Ring := R -> eulers module R
eulers Module := M -> (
h := hilbertPolynomial M;
for i in 0 .. dim h list euler diff(h, i))
genus Ring := R -> genus module R
genus Module := M -> (
e := euler M;
d := dim M - 1;
(-1)^d * (e - 1))
genera Ring := R -> genera module R
genera Module := M -> (
e := eulers M;
d := dim M - 1;
apply(#e, i -> (-1)^(i+d) * (e#i - 1)))
-----------------------------------------------------------------------------
-- reduceHilbert
-----------------------------------------------------------------------------
reduceHilbert = method()
reduceHilbert Divide := ser -> (
num := numerator ser; -- an element of the degrees ring
if num == 0 then return Divide {num, 1_(ring num)};
den := denominator ser; -- a Product of Powers
newden := Product nonnull apply(toList den, pwr -> (
fac := pwr#0; -- 1-T_i
ex := pwr#1; -- exponent
while ex > 0
and num % fac == 0 -- this works because of Mike's magic in the engine
do (
num = num // fac;
ex = ex - 1;
);
if ex > 0 then Power {fac, ex}));
Divide {num, newden})
-----------------------------------------------------------------------------
-- hilbertSeries
-----------------------------------------------------------------------------
exactKey := "exact hilbertSeries"
reducedKey := "reduced exact hilbertSeries"
approxKey := "approximate hilbertSeries"
hilbertSeries = method(
Options => {
Order => infinity,
Reduce => false,
}
)
hilbertSeries QuotientRing :=
hilbertSeries PolynomialRing := opts -> R -> hilbertSeries(module R, opts)
hilbertSeries Ideal := opts -> I -> hilbertSeries(comodule I, opts)
hilbertSeries Module := opts -> M -> (
R := ring M;
hft := heft R;
if hft === null then error "hilbertSeries: ring has no heft vector";
ord := opts.Order;
-- using cached result
if ord === infinity then (
if opts.Reduce then (
if M.cache#?reducedKey then return M.cache#reducedKey;
if M.cache#?exactKey then return(M.cache#reducedKey = reduceHilbert M.cache#exactKey))
else if M.cache#?exactKey then return M.cache#exactKey)
else if instance(ord, ZZ) then (
if M.cache#?approxKey then (
(ord2, ser) := M.cache#approxKey;
if ord == ord2 then return ser else
if ord < ord2 then return part(, ord-1, hft, ser));
if M.cache#?exactKey or M.cache#?reducedKey then (
if not M.cache#?reducedKey then M.cache#reducedKey = reduceHilbert M.cache#exactKey;
return last(M.cache#approxKey = (ord, truncateSeries(ord, hft, M.cache#reducedKey))))
)
else error "hilbertSeries: option Order expected infinity or an integer";
-- computing the Hilbert series
ser = runHooks((hilbertSeries, Module), (opts, M));
if ser === null then error("no applicable strategy for computing Hilbert series over ", toString R);
-- returning the appropriate format
if ord < infinity then last M.cache#approxKey else
if opts.Reduce then M.cache#reducedKey else M.cache#exactKey)
addHook((hilbertSeries, Module), Strategy => Default, (opts, M) -> (
-- some examples compute degrees of inhomogeneous modules,
-- so we can't refuse to compute when the module is not homogeneous.
-- is it guaranteed to work in some sense?
-- if not isHomogeneous M then error "expected a homogeneous module";
R := ring M;
T := degreesRing R;
hft := heft R;
ord := opts.Order;
num := poincare M; -- 'poincare' treats monomial ideals correctly (as the corresponding quotient module)
deg := tally degrees R.FlatMonoid;
den := Product apply(sort apply(pairs deg, (i, e) -> {1 - T_i, e}), t -> Power t);
M.cache#exactKey = ser := Divide {num, den};
if ord < infinity or opts.Reduce then
M.cache#reducedKey = reduceHilbert ser;
if ord < infinity then
M.cache#approxKey = (ord, truncateSeries(ord, hft, ser)) else ser))
hilbertSeries ProjectiveHilbertPolynomial := opts -> P -> (
d := max keys P;
t := (degreesRing 1)_0;
new Divide from {
sum apply(pairs P, (n, a) -> a * (1-t)^(d-n)),
new Power from {1-t, d+1}
})
-----------------------------------------------------------------------------
-- hilbertFunction
-----------------------------------------------------------------------------
hilbertFunction = method()
hilbertFunction(ZZ, Ring) :=
hilbertFunction(ZZ, Ideal) :=
hilbertFunction(ZZ, Module) := (d, M) -> hilbertFunction({d}, M)
hilbertFunction(List, Ring) := (L, R) -> hilbertFunction(L, module R)
hilbertFunction(List, Ideal) :=
hilbertFunction(List, Module) := (L, M) -> (
-- computes the Hilbert series to a sufficiently high order and
-- returns the desired coefficient, thus it is cached by hilbertSeries
R := ring M;
if not all(L, i -> instance(i, ZZ)) then error "hilbertFunction: expected degree to be an integer or list of integers";
if #L =!= degreeLength R then error "hilbertFunction: degree length mismatch";
if heft R === null then error "hilbertFunction: ring has no heft vector";
--
HF := runHooks((hilbertFunction, List, Module), (L, M));
if HF =!= null then return HF;
error("no applicable strategy for computing Hilbert function over ", toString R))
addHook((hilbertFunction, List, Module), Strategy => Default, (L, M) -> (
h := heft ring M;
f := hilbertSeries(M, Order => 1 + sum(h, L, times));
U := monoid ring f;
coefficient(U_L, f)))
|