1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
-- This file written by Amelia Taylor <ataylor@stolaf.edu>
needs "matrix1.m2"
----- This file was last updated on June 22, 2006
--------------------------------------------------------------
-- This begins the code for minimalPresentation which takes both ideals and
-- quotient rings as input.
-- checkpoly, finishmap, monOrder and coreProgram are called
-- in the top-level program minimalPresentation.
-*
checkpoly = (f)->(
-- 1 Argument: A polynomial.
-- Return: A list of the index of the first
-- (by index in the ring) variable that occurs
-- linearly in f and does not occur in any other
-- term of f and a polynomial with that term
-- eliminated.
A := ring(f);
p := first entries contract(vars A,f);
i := position(p, g -> g != 0 and first degree g === 0);
if i === null then
{}
else (
v := A_i;
c := f_v;
{i,(-1)*(c^(-1)*(f-c*v))}
)
)
finishMap = (A,L,xmap) -> (
-- 2 Arguments: A matrix and a new mutable list.
-- Return: a map from the ring corresponding to
-- entries in the matrix to itself given by
-- entries in the matrix which have a linear
-- term that does not occur elsewhere in the
-- polynomial.
count := #L;
while count > 0 do (
M := map(A,A,matrix{toList xmap});
p := checkpoly(M(L_(count-1)));
if p =!= {} then (
xmap#(p#0) = p#1;
F1 := map(A,A,toList xmap);
F2 := map(A,A, F1 (F1.matrix));
xmap = new MutableList from first entries F2.matrix;);
count = count-1
);
map(A,A,toList xmap)
)
monOrder := (Ord, l) -> (
-- 2 arguments: a monomial order and a list of variables.
-- return: a new monomial order corresponding to the subset of
-- of variables in l.
if (Ord === Lex or Ord === GRevLex or Ord === RevLex)
then newOrd := Ord
-- The order for the original ring is a product order.
-- Build a new product order based on variables remaining
-- for the minimal presentation.
else (oldpieces := toList Ord;
newpieces := {};
count := 0;
done := #oldpieces;
m := l;
while done > 0 do (
sm := #(select(m, i -> i < oldpieces#0 + count));
newpieces = append(newpieces, sm);
if sm == 0 then m = m else m = drop(m, sm);
count = count + oldpieces#0;
oldpieces = drop(oldpieces, 1);
done = #oldpieces;
);
newpieces = select(newpieces, i -> i != 0);
newOrd = ProductOrder newpieces;
);
newOrd
)
monOrder = (Ord, l) -> GRevLex=>#l
coreProgram = (I, newvar) -> (
-- 2 Arguments: An ideal and a variable, or null.
-- Return: A list consisting of an ideal, a
-- quotient ring, a polynomial ring,
-- two matrices and a list of variables.
-- Note: The ideal is the ideal promised by
-- minimalPresentation ideal and the polynomial ring,
-- the ring for this idea. The quotient
-- ring similar for minimalPresentation ring. The
-- matrices set up the maps.
R := ring I;
F := finishMap(R,flatten entries generators I, new MutableList from first entries (vars R));
-- The key computation of the polynomials with linear
-- terms is complete. Now build desired rings, ideals
-- and maps through this map.
LF := flatten entries F.matrix;
l := toList select(0..#LF-1, i -> LF#i == R_i);
--MES--l1 := apply(LF, f -> sum(exponents f));
--MES--l := positions(l1,f -> if f===0 then false else (sum f) === 1);
-- l contains the indices for the variables remaining in
-- the minimal presentation. l is used to set new rings,
-- including getting the correct monomial order.
varsR := apply(l,f->R_f);
degreesS := apply(l,i->((monoid R).degrees)#i);
newMonOrder := monOrder((monoid R).Options.MonomialOrder, l);
-- The two cases cover if the user does not or does (respectively
-- give a new variable name for the minimal presentation ring).
if newvar === null then (
S := (coefficientRing R)(monoid [varsR, Degrees => degreesS, MonomialOrder => newMonOrder]);
vv := map(S,S);
newI := trim vv(substitute (ideal compress generators F(I), S));
S2 := S/newI;
FmatS := substitute(F.matrix, S);
FmatS2 := substitute(F.matrix, S2))
else (
R2 := (coefficientRing R)(monoid [varsR]);
y := newvar;
var := splice{y_0..y_(#l-1)};
S = (coefficientRing R)(monoid [var,Degrees => degreesS, MonomialOrder => newMonOrder]);
vv = map(S, R2,vars S);
J := substitute (ideal compress generators F(I), R2);
newI = trim vv(J);
S2 = S/newI;
FmatS = vv(substitute(F.matrix,R2));
FmatS2 = substitute(FmatS, S2);
);
(newI, S, S2, FmatS, FmatS2, varsR)
)
minimalPresentation Ideal := o -> (I) -> (
--1 Argument: Any ideal in a polynomial ring.
--Return: An ideal J in a polynomial ring S such that
-- S/J is isomorphic with R/I. Maps from R to S
-- and S to R are encoded in I.cache.minimalPresentationMap
-- and I.cache.minimalPresentationMapInv respectively.
--Method: Generators of I that are linear and occur
-- only once in that generator are removed.
-- This top level program calls coreProgram.
-- coreProgram calls monOrder and finishMap.
-- finishMap calls checkpoly.
if I == 0 then I else (
S := coreProgram(I,o.Variable);
I.cache.minimalPresentationMap = map(S_1, ring I, S_3);
I.cache.minimalPresentationMapInv = map(ring I, S_1, S_5);
S_0
)
)
minimalPresentation Ring := o -> (R) -> (
-- 1 Argument: Any quotient of a polynomial ring R.
-- Return: An quotient ring R' = S'/J isomorphic to
-- R. Maps from R to R' and R' to R are
-- encoded in R.minimalPresentationMap and R.minimalPresentationMapInv
-- respectively.
--Method: Write R as S/I, then generators of I that
-- are linear and occur only once in that
-- generator are removed. This top level
-- program calls coreProgram.
-- coreProgram calls monOrder and finishMap.
-- finishMap calls checkpoly.
M := presentation R;
S := coreProgram(ideal M, o.Variable);
R.minimalPresentationMap = map(S_2,R,S_4);
R.minimalPresentationMapInv = map(R,S_2,S_5);
S_2)
---------------------------
-- minimalPresentationMap2 = method()
-- minimalPresentationMap2 Ring := (R) -> (
--Input: A quotient ring.
--Output: A map from the polynomial ring to itself
-- that is the map used to form a minimal
-- presentation of R.
-- finishMap(R,flatten entries presentation R, new MutableList from first entries (generators ideal presentation R))
-- )
--minimalPresentationMap2 Ideal := (I) -> (
--Input: An ideal.
--Output: A map from the ring of I, call it A,
-- to itself, that is the map used to form a minimal
-- presentation of R.
-- finishMap(R,flatten entries generators I, new MutableList from first entries (generators I))
-- )
isReductor = (f) -> (
inf := leadTerm f;
part(1,f) != 0 and
(set support(inf) * set support(f - inf)) === set{})
findReductor = (L) -> (
L1 := select(L, isReductor);
L2 := sort apply(L1, f -> (size f,f));
if #L2 > 0 then L2#0#1)
reduceIdeal = (L) -> (
L1 := select(L, isReductor);
L2 := sort apply(L1, f -> (size f,f));
if #L2 > 0 then (
g := L2#0#1;
<< "reducing with " << g << endl << endl;
L = apply(L, f -> f % g))
else (
print "cannot reduce ideal further";
L))
reduceLinears = method(Options => {Limit=>infinity})
reduceLinears Ideal := o -> (I) -> (
-- returns (J,L), where J is an ideal,
-- and L is a list of: (variable x, poly x+g)
-- where x+g is in I, and x doesn't appear in J.
-- also x doesn't appear in any poly later in the L list
R := ring I;
-- make sure that R is a polynomial ring, no quotients
S := (coefficientRing R)[generators R, Weights=>{numgens R:-1}, Global=>false];
IS := substitute(I,S);
L := flatten entries generators IS;
count := o.Limit;
M := while count > 0 list (
count = count - 1;
g := findReductor L;
if g === null then break;
ing := leadTerm g;
<< "reducing using " << ing << endl << endl;
L = apply(L, f -> f % g);
(substitute(leadTerm g, R), substitute(-g+leadTerm g,R))
);
(substitute(ideal L,R), M)
)
*-
reductorVariable = (f,excludes,onlyOnes) -> (
-- inputs:
-- f: a polynomial
-- excludes: a (possibly empty) set of variables to NOT reduce
-- onlyOnes: only return reductor if the lead coefficient is 1 or -1
-- (e.g. needed if the coefficient ring is ZZ)
-- output:
-- a list of two elements {c,x}, where c*x appears as a term in f
-- such that the variable x does not appear elsewhere in f.
-- x will be a variable NOT in the excludes list.
-- If no such term exists, {} is returned.
-- assumption: all variables in the ring have degree 1.
inf := part(1,f);
restf := set support(f-inf);
supInf := set support(inf);
varList := toList (supInf-restf-excludes);
-- either varList = {} and there are no linear terms whose
-- variables don't occur elsewhere, otherwise we found such
-- a linear term.
if varList === {} then varList
else (
termf := terms f;
s := select(termf, i -> member(leadMonomial i , varList));
coef := s/leadCoefficient;
pos := position(coef, i -> (i == 1) or (i == -1));
-- best to choose linear terms with coefficient 1 or -1 if
-- possible.
if pos =!= null then (coef_pos, leadMonomial s_pos)
else if not onlyOnes then {coef_0, leadMonomial s_0}
else {}
)
)
findReductor = (L,excludes,onlyOnes) -> (
-- Inputs:
-- L:List, of polynomials in a ring R
-- excludes, a (possibly empty) set of variables
-- onlyOnes: only return reductor if the lead coefficient is 1 or -1
-- (e.g. needed if the coefficient ring is ZZ)
-- Output:
-- (x, x - 1/c f), where c*x is a term in f such that
-- x does not appear in x - 1/c f, where f is some
-- element of L. x is restricted to be a variables not
-- in the excludes set.
-- null, if none exists.
-- assumption: all variables in R have degree 1.
L1 := sort apply(L, f -> (size f,f));
redVar := {};
L2 := select(1, L1, p -> (
redVar = reductorVariable(p#1, excludes, onlyOnes);
redVar =!= {})
);
if redVar =!= {} then (redVar#1, redVar#1 - (1/(redVar#0))*L2#0#1)
)
reduceLinears = method(Options => {Limit=>infinity})
reduceLinears(Ideal,Set) := o -> (I,excludes) -> (
-- 1 argument: an ideal
-- 1 optional argument: a limit on the recursion through the
-- generators of the ideal.
-- Return: (J,L), where J is an ideal, and L is a list of:
-- (variable x, poly x+g) where x+g is in I, and x doesn't appear
-- in J and x does not appear in any polynomial later in the L list.
R := ring I;
onlyOnes := (coefficientRing R === ZZ); -- are there other cases when this is bad?
L := flatten entries generators I;
count := o.Limit;
M := while count > 0 list (
count = count - 1;
g := findReductor(L, excludes, onlyOnes);
if g === null then break;
-- << "---------------------------------" << endl;
-- << "reducing using " << g#0 << endl << endl;
-- << " sending it to " << g#1 << endl << endl;
F := map(R,R,{g#0 => g#1});
L = apply(L, i -> F(i));
g
);
-- Now loop through and improve M
M = backSubstitute M;
-- << "------- backtracked ---------" << endl;
-- scan(M, g -> (
-- << "---------------------------------" << endl;
-- << "reducing using " << g#0 << endl << endl;
-- << " sending it to " << g#1 << endl << endl;
-- ));
(ideal matrix(R,{L}), M) -- same as (ideal L,M) except if L=={}
)
backSubstitute = (M) -> (
-- 1 argument: A list of pairs of variable and a polynomial.
-- Return: A list of pairs of the form (variable x, poly g)
-- where x-g is in I, and x does not appear in any polynomial
-- later.
--
-- If M has length <= 1, then nothing needs to be done
if #M <= 1 then M
else (
xs := set apply(M, i -> i#0);
R := ring M#0#0;
F := map(R,R, apply(M, g -> g#0 => g#1));
H := new MutableHashTable from apply(M, g -> g#0 => g#1);
scan(reverse M, g -> (
v := g#0;
restg := H#v;
badset := xs * set support restg;
while badset =!= set{} do (
restg = F(restg);
badset = xs * set support restg);
H#v = restg;
));
pairs H)
)
minPressy = (I,excludes) -> (
-- Returns: an ideal J in a polynomial ring over ZZ or a base field
-- such that (ring I)/I is isomorphic to (ring J)/J.
-- Approach: look at generators of I, find those with linear
-- terms that don't use the linear variables in any other
-- terms. Then map that variable to remainder. Collect mapping
-- information and cache in the ideal (ring in the case of the
-- ring call).
--
-- if the ring I is a tower, flatten it first, and if the ring has quotient
-- elements, add them to flatI
R := ring I;
(flatI,F) := flattenRing I;
flatR := ring flatI;
(S,IS) := (flatR, flatI);
if any(degrees flatR, d -> d =!= {1}) then (
-- reset all the degrees to 1's, to use our reductor algorithm
S = newRing(flatR, Degrees=>{(numgens flatR : 1)});
IS = substitute(IS, vars S);
);
excludes = set (generators S)_excludes;
(J,H) := reduceLinears(IS,excludes);
StoFlatR := map(flatR,S,vars flatR);
J = ideal compress generators StoFlatR J; -- now in flatR
H = apply(H, (a,b) -> (StoFlatR a, StoFlatR b)); -- everything in flatR now
xs := set apply(H, index@@first); -- indices of the variables reduced out
varskeep := sort (toList(set (generators S/index) - xs));
newS := first selectVariables(varskeep, flatR);
I.cache.minimalPresentationMapInv = map(R,newS,apply(varskeep, i -> R_i));
vs := new HashTable from apply(#varskeep, i -> varskeep#i => i);
trivialToNewS := map(newS, flatR, toList apply(numgens flatR, i -> if vs#?i then newS_(vs#i) else 0_newS));
X := new MutableList from generators flatR;
scan(pairs vs, (v,i) -> X#v = newS_i);
scan(H, (v,g) -> X#(index v) = trivialToNewS g);
I.cache.minimalPresentationMap = map(newS, R, toList X);
trivialToNewS J)
minPressyRing = (R, excludes) -> (
-- 1 argument: A ring R (most often a quotient ring).
-- Return: A ring isomorphic to R using minimalPresentation on
-- the presentation ideal of R. For more information see
-- minimalPresentation Ideal.
I := ideal R;
result := minPressy(I, excludes);
finalRing := (ring result)/result;
-- put the maps cached on I in the right place for the ring.
f := substitute(matrix I.cache.minimalPresentationMap, finalRing);
fInv := substitute(matrix I.cache.minimalPresentationMapInv, R);
R.minimalPresentationMap = map(finalRing, R, f);
R.minimalPresentationMapInv = map (R, finalRing, fInv);
finalRing
)
checkExcludes = (R,excludes) -> (
if instance(excludes,ZZ)
then excludes = {excludes};
if not instance(excludes,BasicList)
then error"expected an index or list of indices of variables in a ring";
if any(excludes, e -> not instance(e,ZZ))
then error "the Exclude list must consist of integer indices";
)
minimalPresentation Ideal := prune Ideal := Ideal => opts -> (I) -> (
checkExcludes(ring I,opts.Exclude);
minPressy(I,opts.Exclude))
minimalPresentation Ring := prune Ring := Ring => opts -> (R) -> (
checkExcludes(R,opts.Exclude);
minPressyRing(R,opts.Exclude))
-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/m2 "
-- End:
|