1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
-- Copyright 1995-2002 by Daniel R. Grayson and Michael Stillman
needs "matrix1.m2" -- for Ideal
needs "matrix2.m2" -- for modulo
needs "quotring.m2" -- for QuotientRing
Ideal * Vector := (I,v) -> (
image((generators I) ** v#0)
)
Module + Module := Module => (M,N) -> (
if ring M =!= ring N
then error "expected modules over the same ring";
R := ring M;
if ambient M != ambient N
or M.?relations and N.?relations and M.relations != N.relations
or M.?relations and not N.?relations
or not M.?relations and N.?relations
then error "expected submodules of the same module";
subquotient(
ambient M,
if not M.?generators or not N.?generators then null else M.generators | N.generators,
if M.?relations then M.relations else null
)
)
-- TODO: remove this when all tensor methods are installed on 'tensor' instead of **
tensor(Thing, Thing) := true >> opts -> (M, N) -> M ** N
undocumented' (tensor, Thing, Thing)
Module ** Module := Module => (M, N) -> tensor(M, N)
tensor(Module, Module) := Module => {} >> opts -> (M, N) -> (
(oM,oN) := (M,N);
Y := youngest(M.cache.cache,N.cache.cache);
if Y#?(symbol **,M,N) then return Y#(symbol **,M,N);
if M.?generators and not isFreeModule N
or N.?generators and not isFreeModule M then (
if M.?generators then M = cokernel presentation M;
if N.?generators then N = cokernel presentation N;
);
R := ring M;
if R =!= ring N then error "expected modules over the same ring";
T := if isFreeModule M then (
if isFreeModule N then (
new Module from (R, raw M ** raw N)
)
else subquotient(
if N.?generators then M ** N.generators,
if N.?relations then M ** N.relations))
else (
if isFreeModule N then (
subquotient(
if M.?generators then M.generators ** N,
if M.?relations then M.relations ** N))
else cokernel map(R, rawModuleTensor( raw M.relations, raw N.relations )));
Y#(symbol **,oM,oN) = T;
-- we do not set T.cache.components, as "components" is for sums, not tensor products
T.cache.formation = FunctionApplication (tensor, (M,N));
T)
Matrix ** Module := Matrix => (f,M) -> if isFreeModule M and M == (ring M)^1 and ring M === ring f then f else f ** id_M
Module ** Matrix := Matrix => (M,f) -> if isFreeModule M and M == (ring M)^1 and ring M === ring f then f else id_M ** f
-- TODO: this is undocumented and only works correctly in a specific case.
-- can its goal be accomplished differently?
Option ** Option := (x,y) -> (
(a,b) := (x#0,y#0); -- the labels
(M,N) := (x#1,y#1); -- the objects (modules, etc.)
T := M ** N;
labels := T.cache.indices = {a,b};
ic := T.cache.indexComponents = new HashTable from {a => 0, b => 1};
-- now, in case T is a map (i.e., has a source and target), then label the source and target objects of the tensor product
if T.?source and T.?target then (
T.source.cache.indexComponents = T.target.cache.indexComponents = ic;
T.source.cache.indices = T.target.cache.indices = labels;
);
T)
-----------------------------------------------------------------------------
-- base change
-----------------------------------------------------------------------------
-- TODO: make documentation page for base change
Module ** Ring := Module => (M,R) -> R ** M -- grandfathered, even though our modules are left modules
Ring ** Module := Module => (R,M) -> (
A := ring M;
if A === R then return M;
pr := try (promote(1_A, R); true) else false;
if pr then (
if M.?generators then cokernel promote(presentation M, R)
else if M.?relations then cokernel promote(M.relations,R)
else R^(promote(- degrees M,A,R)))
else map(R,A) ** M)
Matrix ** Ring := Matrix => (f,R) -> R ** f -- grandfathered, even though our modules are left modules
Ring ** Matrix := Matrix => (R,f) -> (
B := ring source f;
A := ring target f;
if B === R and A === R then f
else map( target f ** R, source f ** R, promote(cover f, R), Degree => first promote({degree f}, A, R) )
)
Ideal * Ring := Ideal ** Ring := Ideal => (I, R) -> R ** I
Ring * Ideal := Ring ** Ideal := Ideal => (R, I) -> if ring I === R then I else ideal(I.generators ** R)
-----------------------------------------------------------------------------
-- the key for issub hooks under GlobalHookStore
protect ContainmentHooks
issub := (f, g) -> (
if (R := ring f) =!= ring g then error "isSubset: expected objects of the same ring";
if (c := runHooks(ContainmentHooks, (f, g))) =!= null then c
else error "isSubset: no strategy implemented for this type of ring")
-- TODO: we can do better in the homogeneous case!
addHook(ContainmentHooks, Strategy => Inhomogeneous, (f, g) -> -1 === rawGBContains(raw gb g, raw f))
ZZ == Ideal := (n,I) -> I == n
Ideal == ZZ := (I,n) -> (
if n === 0
then I.generators == 0
else if n === 1
then issub(matrix {{1_(ring I)}}, generators I)
else error "attempted to compare ideal to integer not 0 or 1"
)
ZZ == Module := (n,M) -> M == n
Module == ZZ := (M,n) -> (
if n =!= 0 then error "attempted to compare module to nonzero integer";
if M.?generators then (
if M.?relations then issub(M.generators, M.relations)
else M.generators == 0
)
else (
if M.?relations then issub(id_(ambient M), M.relations)
else M.numgens === 0
)
)
-----------------------------------------------------------------------------
presentation(Module) := Matrix => M -> (
if M.cache.?presentation then M.cache.presentation else M.cache.presentation = (
if M.?generators then (
modulo( M.generators, if M.?relations then M.relations)
)
else relations M))
-----------------------------------------------------------------------------
minimalPresentation(Module) := prune(Module) := Module => opts -> (cacheValue (symbol minimalPresentation => opts)) (M -> (
if isFreeModule M then (
M.cache.pruningMap = id_M;
return M);
homog := isHomogeneous M;
if debugLevel > 0 and homog then pushvar(symbol flagInhomogeneity,true);
C := runHooks((minimalPresentation, Module), (opts, M));
if debugLevel > 0 and homog then popvar symbol flagInhomogeneity;
if C =!= null then return C;
error "minimalPresentation: internal error: no method for this type of module"
))
addHook((minimalPresentation, Module), Strategy => Default, (opts, M) -> (
-- we try to handle any module here, without any information about the ring
g := mingens gb presentation M;
f := mutableMatrix g;
row := 0;
piv := new MutableHashTable;
pivColumns := new MutableHashTable;
scan(numRows f, row -> (
scan(numColumns f, col -> if not pivColumns#?col and isUnit f_(row,col) then (
piv##piv = (row,col);
pivColumns#col = true;
columnMult(f,col,1//f_(row,col));
scan(numColumns f, j -> if j != col then columnAdd(f,j,-f_(row,j),col));
break))));
piv = values piv;
f = matrix f;
if isHomogeneous M then f = map(target g, source g, f);
rows := first \ piv;
cols := last \ piv;
f = submatrix'(f,rows,cols);
N := cokernel f;
N.cache.pruningMap = map(M,N,submatrix'(id_(cover M),rows));
break N))
addHook((minimalPresentation, Module), (opts, M) -> (
R := ring M;
if (isAffineRing R and isHomogeneous M) or (R.?SkewCommutative and isAffineRing coefficientRing R and isHomogeneous M) then (
f := presentation M;
g := complement f;
N := cokernel modulo(g, f);
N.cache.pruningMap = map(M,N,g);
break N)))
addHook((minimalPresentation, Module), (opts, M) -> (
R := ring M;
if R === ZZ then (
f := presentation M;
(g,ch) := smithNormalForm(f, ChangeMatrix => {true, false});
piv := select(pivots g,ij -> abs g_ij === 1);
rows := first \ piv;
cols := last \ piv;
(g,ch) = (submatrix'(g,rows,cols),submatrix'(ch,rows,));
N := cokernel g;
N.cache.pruningMap = map(M,N,id_(target ch) // ch); -- yuk, taking an inverse here, gb should give inverse change matrices, or the pruning map should go the other way
break N)))
addHook((minimalPresentation, Module), (opts, M) -> (
R := ring M;
if instance(R,PolynomialRing) and numgens R === 1 and isField coefficientRing R and not isHomogeneous M then (
f := presentation M;
k := coefficientRing R;
x := local x;
S := k[x, MonomialOrder => {Position => Down}];
p := map(S,R,vars S);
p' := map(R,S,vars R);
f = p f;
(g,ch) := smithNormalForm(f, ChangeMatrix => {true, false});
isunit := r -> r != 0 and degree r === {0};
piv := select(pivots g,ij -> isunit g_ij);
rows := first \ piv;
cols := last \ piv;
(g,ch) = (submatrix'(g,rows,cols),submatrix'(ch,rows,));
(g,ch) = (p' g,p' ch);
N := cokernel g;
N.cache.pruningMap = map(M,N,id_(target ch) // ch); -- yuk, taking an inverse here, gb should give inverse change matrices, or the pruning map should go the other way
break N)))
minimalPresentation(Matrix) := prune(Matrix) := Matrix => opts -> (m) -> (
M := source m;
if not M.cache.?pruningMap then m = m * (minimalPresentation M).cache.pruningMap;
N := target m;
if not N.cache.?pruningMap then m = (minimalPresentation N).cache.pruningMap^-1 * m;
m)
factor Module := opts -> (M) -> (
R := ring M;
if isField R then Sum { Power { expression R, rank M } }
else if R === ZZ or instance(R,PolynomialRing) and numgens R == 1 and isField coefficientRing R then (
p := presentation minimalPresentation M;
m := numgens target p;
n := numgens source p;
t := tally apply(pivots p, (i,j) -> if R === ZZ then abs p_(i,j) else p_(i,j));
if m > n then t = t + new Tally from { 0 => m-n };
eR := if hasAttribute(R,ReverseDictionary) then getAttribute(R,ReverseDictionary) else expression R;
Sum apply(sort pairs t, (d,e) -> Power { if d === 0 then hold eR else Divide{ eR, factor d}, e }))
else error "expected module over ZZ, k[x], or a field"
)
-----------------------------------------------------------------------------
dual Module := Module => {} >> o -> F -> if F.cache.?dual then F.cache.dual else F.cache.dual = (
if not isFreeModule F then kernel transpose presentation F
else new Module from (ring F,rawDual raw F))
Module#id = (M) -> map(M,M,1)
reshape = method()
reshape(Module,Module,Matrix) := Matrix => (F, G, m) -> map(F,G,rawReshape(raw m, raw cover F, raw cover G))
Hom(Ideal, Ideal) := Module => (I,J) -> Hom(module I, module J)
Hom(Ideal, Module) := Module => (I,M) -> Hom(module I, M)
Hom(Module, Ideal) := Module => (M,I) -> Hom(M, module I)
Hom(Module, Ring) := Module => (M,R) -> Hom(M, R^1)
Hom(Ring, Module) := Module => (R,M) -> Hom(R^1, M)
Hom(Ideal, Ring) := Module => (I,R) -> Hom(module I, R^1)
Hom(Ring, Ideal) := Module => (R,I) -> Hom(R^1, module I)
Hom(Module, Module) := Module => (M,N) -> (
Y := youngest(M.cache.cache,N.cache.cache);
if Y#?(Hom,M,N) then return Y#(Hom,M,N);
H := trim kernel (transpose presentation M ** N);
H.cache.homomorphism = (f) -> map(N,M,adjoint'(f,M,N), Degree => first degrees source f);
Y#(Hom,M,N) = H; -- a hack: we really want to type "Hom(M,N) = ..."
H.cache.formation = FunctionApplication { Hom, (M,N) };
H)
adjoint' = method()
adjoint'(Matrix,Module,Module) := Matrix => (m,G,H) -> (
-- adjoint': m : F --> Hom(G,H) ===> F ** G --> H
-- warning: in versions 1.7.0.1 and older dual G was called for, instead of G, since G was assumed to be free
F := source m;
inducedMap(H, F ** G, reshape(super H, F ** G, super m),Verify=>false))
adjoint = method()
adjoint (Matrix,Module,Module) := Matrix => (m,F,G) -> (
-- adjoint : m : F ** G --> H ===> F --> Hom(G,H)
H := target m;
inducedMap(Hom(G,H), F, reshape(Hom(cover G,ambient H), F, super m),Verify=>false))
homomorphism = method()
homomorphism Matrix := Matrix => (f) -> (
-- from a map R^1 -> Hom(M,N) produce a map M-->N
H := target f;
if not H.cache.?homomorphism then error "expected target of map to be of the form 'Hom(M,N)'";
if not isFreeModule source f
or not rank source f == 1 then error "expected source of map to be free of rank 1";
H.cache.homomorphism f)
homomorphism' = method()
homomorphism' Matrix := Matrix => (f) -> (
-- from a map M-->N produce a map R^1 -> Hom(M,N)
R := ring f;
M := source f;
adjoint(f,R^1,M)
)
compose = method()
compose(Module, Module, Module) := Matrix => (M,N,P) -> (
R := ring M;
if not ring N === R or not ring P === R then error "expected modules over the same ring";
if isQuotientModule N then (
-- Now cover N === ambient N
inducedMap(Hom(M,P),,
map(dual cover M ** ambient P, Hom(M,N)**Hom(N,P),
(dual cover M ** reshape(R^1, cover N ** dual cover N, id_(cover N)) ** ambient P)
*
(generators Hom(M,N) ** generators Hom(N,P))),
Verify=>false))
else (
N' := cokernel presentation N;
compose(M,N',P) * (Hom(M,map(N',N,1))**Hom(map(N,N',1),P))))
flatten Matrix := Matrix => m -> (
R := ring m;
F := target m;
G := source m;
if not isFreeModule F or not isFreeModule G
then error "expected source and target to be free modules";
if numgens F === 1
then m
else (
f := reshape(R^1, G ** dual F ** R^{ - degree m}, m);
f = map(target f, source f, f, Degree => toList(degreeLength R:0));
f))
flip = method()
flip(Module,Module) := Matrix => (F,G) -> map(ring F,rawFlip(raw F, raw G))
-----------------------------------------------------------------------------
Module / Module := Module => (M,N) -> (
L := ambient M;
if L != ambient N then error "expected modules with the same ambient module";
R := ring M;
if N.?generators
then (
p := N.generators;
if M.?relations then (
p = p | M.relations;
);
subquotient(
if M.?generators then M.generators,
-- mingens image -- do we need this ???
p))
else cokernel id_L)
Module / RingElement := Module => (M,x) -> M / (x * M)
Module / Sequence := Module / List := Module => (M,v) -> (
R := ring M;
v = toList v;
if all(v, w -> class w === M)
then M / image matrix v
else if all(v, w -> class w === R)
then M / (ideal v * M)
else error("expected a list of elements of ", toString M, " or of ", toString R)
)
Module / Vector := Module => (M,v) -> (
if class v =!= M
then error("expected ", toString v, " to be an element of ", toString M);
M / image matrix {v})
-----------------------------------------------------------------------------
ZZ _ Module := Vector => (i,M) -> (
if i =!= 0 then error "expected 0 as element of module";
m := map(M,(ring M)^1,0);
new target m from {m})
Module _ ZZ := Vector => (M,i) -> (
R := ring M;
p := M_{i};
d := first degrees source p;
p = map(M,R^1,p,Degree => d);
new target p from {p})
-----------------------------------------------------------------------------
Module ^ Array := Matrix => (M,w) -> if M.cache#?(symbol ^,w) then M.cache#(symbol ^,w) else M.cache#(symbol ^,w) = (
-- we don't splice any more because natural indices include pairs (i,j).
w = toList w;
if not M.cache.?components then error "expected a direct sum module";
if M.cache.?indexComponents then (
ic := M.cache.indexComponents;
oldw := w;
w = apply(w, i -> if ic#?i
then ic#i
else error "expected an index of a component of a direct sum"));
-- if the components of M have 3,4,5 generators, then
-- we want to construct { (0,1,2), (3,4,5,6), (7,8,9,10,11) } for quick access
k := 0;
v := apply(M.cache.components, N -> k .. (k = k + numgens N) - 1);
newcomps := M.cache.components_w;
if oldw =!= null then newcomps = apply(oldw,newcomps,(i,M) -> i => M); -- warning: duplicate entries in oldw will lead to inaccessible components
map(directSum newcomps, M, (cover M)^(splice apply(w, i -> v#i))))
Module _ Array := Matrix => (M,w) -> if M.cache#?(symbol _,w) then M.cache#(symbol _,w) else M.cache#(symbol _,w) = (
-- we don't splice any more because natural indices include pairs (i,j).
w = toList w;
if not M.cache.?components then error "expected a direct sum module";
if M.cache.?indexComponents then (
ic := M.cache.indexComponents;
oldw := w;
w = apply(w, i -> if ic#?i
then ic#i
else error "expected an index of a component of a direct sum"));
-- if the components of M have 3,4,5 generators, then
-- we want to construct { (0,1,2), (3,4,5,6), (7,8,9,10,11) } for quick access
k := 0;
v := apply(M.cache.components, N -> k .. (k = k + numgens N) - 1);
newcomps := M.cache.components_w;
if oldw =!= null then newcomps = apply(oldw,newcomps,(i,M) -> i => M); -- warning: duplicate entries in oldw will lead to inaccessible components
map(M, directSum newcomps, (cover M)_(splice apply(w, i -> v#i))))
-----------------------------------------------------------------------------
Module ^ List := Matrix => (M,rows) -> submatrix(id_M,rows,)
-----------------------------------------------------------------------------
Module _ List := Matrix => (M,v) -> (
N := cover M;
f := id_N_v;
map(M, source f, f))
-----------------------------------------------------------------------------
isSubset(Module,Module) := (M,N) -> (
-- here is where we could use gb of a subquotient!
ambient M == ambient N and
if M.?relations and N.?relations then (
image M.relations == image N.relations
and
issub(M.relations | generators M, N.relations | generators N))
else if not M.?relations and not N.?relations then (
issub(generators M, generators N))
else (
-- see the code for subquotient: if present, M.relations is nonzero; same for N
-- so one of the modules has nonzero relations and the other doesn't
false
)
)
isSubset(Ideal,Ideal) := (I,J) -> isSubset(module I, module J)
isSubset(Module,Ideal) := (M,J) -> isSubset(M, module J)
isSubset(Ideal,Module) := (I,N) -> isSubset(module I, N)
-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/m2 "
-- End:
|