File: BIBasis.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (180 lines) | stat: -rw-r--r-- 13,731 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
-- -*- coding: utf-8 -*-
-- licensed under GPL v2 or any later version

----------------------------------------------------------------------
-- Header
----------------------------------------------------------------------

newPackage(
    "BIBasis",
    Version => "0.6.3",
    Date => "March 29, 2011",
    Authors => {
        {Name => "Mikhail Zinin", Email => "mzinin@gmail.com"}
    },
    Headline => "involutive Pommaret basis in a Boolean ring",
    Keywords => {"Groebner Basis Algorithms"},
    PackageImports => {"BooleanGB"},
    DebuggingMode => false
    )

export {
       -- functions
       "biBasis",
       -- options
       "toGroebner" -- whether reduce to Groebner basis or not
       }

debug Core

----------------------------------------------------------------------
-- Methods
----------------------------------------------------------------------

biBasis = method(TypicalValue => Ideal, Options => {toGroebner => true})
biBasis Ideal := Ideal => o -> I -> ideal map(ring I, rawBIBasis(raw compress generators I, o.toGroebner))

----------------------------------------------------------------------
-- Documentation
----------------------------------------------------------------------

beginDocumentation()

document {
        Key => BIBasis,
        Headline => "Involutive Pommaret basis in a Boolean ring",
        EM "BIBasis", TEX " is the package which implements the methods for constructing the reduced Pommaret 
        and Gr\\\"obner bases in a Boolean ring for a given polynomial Ideal.",
        PARA {
            "Some references:"
             },
        UL {
            TEX "V. P. Gerdt and M. V. Zinin, Involutive Method for Computing Gr\\\"obner Bases over F_2. Programming and Computer Software, Vol. 34, No. 4, 2008, 191-203.",
            TEX "V.P.Gerdt and M.V.Zinin. A Pommaret Division Algorithm for Computing Gr\\\"obner Bases in Boolean Rings. Proceedings of ISSAC 2008, ACM Press, 2008, pp.95--102.",
            "Vladimir Gerdt, Mikhail Zinin and Yuri Blinkov. On computation of Boolean involutive bases. Programming and Computer Software, Vol. 36, No. 2, 2010, 117-123."
           }        
         }

document {
        Key => { biBasis, 
                 (biBasis, Ideal), 
                 [biBasis, toGroebner]
               },
        Headline => "constructs a reduced Boolean Gröbner basis for the given Ideal, if the second argument is true (default), and reduced Boolean Pommaret basis otherwise.",
        Usage => "biBasis(I, toGroebner => true)",
        Inputs => {
                "I" => Ideal
                  },
        Outputs => {
                "P" => Ideal
                   },
        EXAMPLE {
                "R = ZZ/2[x, y, MonomialOrder => GRevLex]",
                "I = ideal(x*y + x + 1)",
                "P = biBasis(I, toGroebner => true)"
                },
        Caveat => UL {
                    "biBasis assumes coefficient Ring of the given Ideal is ZZ/2",
                    "biBasis always treats the given Ideal as a Boolean one",
                    "biBasis assumes the following monomials orders: Lex, GLex, GRevLex"
                     },
        SeeAlso => {gb, gbBoolean}
         }

----------------------------------------------------------------------
-- Tests
----------------------------------------------------------------------

-- Test 0
TEST ///
    -- loadPackage "BIBasis"
    R = ZZ/2[x, y, MonomialOrder => GRevLex]
    I = ideal(x*y + x + 1)
    P = biBasis(I)
    assert(P == ideal(x + 1, y))
///

-- Test 1
TEST ///
    -- loadPackage "BIBasis"
    R = ZZ/2[x, y, z, MonomialOrder => GRevLex]
    I = ideal(x, z)
    G = biBasis(I, toGroebner => true)
    assert(G == ideal(x, z))
    P = biBasis(I, toGroebner => false)
    assert(G == ideal(x, z, y*z))
///

-- Test 2
TEST ///
    -- loadPackage "BIBasis"
    R = ZZ/2[x0,x1,x2,x3,x4,x5,x6,x7,x8,x9, MonomialOrder => GRevLex]
    J = apply(gens R, x -> x^2+x)
    QR = R/J
    I = ideal(x9+x0*x1*x2*x3*x4*x5*x6+x0*x1*x2*x3*x4*x5*x7+x0*x1*x2*x3*x4*x6*x7+x0*x1*x2*x3*x5*x6*x7+x0*x1*x2*x4*x5*x6*x7+x0*x1*x3*x4*x5*x6*x7+x0*x2*x3*x4*x5*x6*x7+x1*x2*x3*x4*x5*x6*x7+x0*x1*x2+x0*x1*x3+x0*x1*x4+x0*x1*x5+x0*x1*x6+x0*x1*x7+x0*x2*x3+x0*x2*x4+x0*x2*x5+x0*x2*x6+x0*x2*x7+x0*x3*x4+x0*x3*x5+x0*x3*x6+x0*x3*x7+x0*x4*x5+x0*x4*x6+x0*x4*x7+x0*x5*x6+x0*x5*x7+x0*x6*x7+x1*x2*x3+x1*x2*x4+x1*x2*x5+x1*x2*x6+x1*x2*x7+x1*x3*x4+x1*x3*x5+x1*x3*x6+x1*x3*x7+x1*x4*x5+x1*x4*x6+x1*x4*x7+x1*x5*x6+x1*x5*x7+x1*x6*x7+x2*x3*x4+x2*x3*x5+x2*x3*x6+x2*x3*x7+x2*x4*x5+x2*x4*x6+x2*x4*x7+x2*x5*x6+x2*x5*x7+x2*x6*x7+x3*x4*x5+x3*x4*x6+x3*x4*x7+x3*x5*x6+x3*x5*x7+x3*x6*x7+x4*x5*x6+x4*x5*x7+x4*x6*x7+x5*x6*x7+x0*x1*x2*x3*x4*x5*x6*x8+x0*x1*x2*x3*x4*x5*x7*x8+x0*x1*x2*x3*x4*x6*x7*x8+x0*x1*x2*x3*x5*x6*x7*x8+x0*x1*x2*x4*x5*x6*x7*x8+x0*x1*x3*x4*x5*x6*x7*x8+x0*x2*x3*x4*x5*x6*x7*x8+x1*x2*x3*x4*x5*x6*x7*x8+x0*x1*x2*x3*x4*x5*x8+x0*x1*x2*x3*x4*x6*x8+x0*x1*x2*x3*x4*x7*x8+x0*x1*x2*x3*x5*x6*x8+x0*x1*x2*x3*x5*x7*x8+x0*x1*x2*x3*x6*x7*x8+x0*x1*x2*x4*x5*x6*x8+x0*x1*x2*x4*x5*x7*x8+x0*x1*x2*x4*x6*x7*x8+x0*x1*x2*x5*x6*x7*x8+x0*x1*x3*x4*x5*x6*x8+x0*x1*x3*x4*x5*x7*x8+x0*x1*x3*x4*x6*x7*x8+x0*x1*x3*x5*x6*x7*x8+x0*x1*x4*x5*x6*x7*x8+x0*x2*x3*x4*x5*x6*x8+x0*x2*x3*x4*x5*x7*x8+x0*x2*x3*x4*x6*x7*x8+x0*x2*x3*x5*x6*x7*x8+x0*x2*x4*x5*x6*x7*x8+x0*x3*x4*x5*x6*x7*x8+x1*x2*x3*x4*x5*x6*x8+x1*x2*x3*x4*x5*x7*x8+x1*x2*x3*x4*x6*x7*x8+x1*x2*x3*x5*x6*x7*x8+x1*x2*x4*x5*x6*x7*x8+x1*x3*x4*x5*x6*x7*x8+x2*x3*x4*x5*x6*x7*x8+x0*x1*x2*x8+x0*x1*x3*x8+x0*x1*x4*x8+x0*x1*x5*x8+x0*x1*x6*x8+x0*x1*x7*x8+x0*x2*x3*x8+x0*x2*x4*x8+x0*x2*x5*x8+x0*x2*x6*x8+x0*x2*x7*x8+x0*x3*x4*x8+x0*x3*x5*x8+x0*x3*x6*x8+x0*x3*x7*x8+x0*x4*x5*x8+x0*x4*x6*x8+x0*x4*x7*x8+x0*x5*x6*x8+x0*x5*x7*x8+x0*x6*x7*x8+x1*x2*x3*x8+x1*x2*x4*x8+x1*x2*x5*x8+x1*x2*x6*x8+x1*x2*x7*x8+x1*x3*x4*x8+x1*x3*x5*x8+x1*x3*x6*x8+x1*x3*x7*x8+x1*x4*x5*x8+x1*x4*x6*x8+x1*x4*x7*x8+x1*x5*x6*x8+x1*x5*x7*x8+x1*x6*x7*x8+x2*x3*x4*x8+x2*x3*x5*x8+x2*x3*x6*x8+x2*x3*x7*x8+x2*x4*x5*x8+x2*x4*x6*x8+x2*x4*x7*x8+x2*x5*x6*x8+x2*x5*x7*x8+x2*x6*x7*x8+x3*x4*x5*x8+x3*x4*x6*x8+x3*x4*x7*x8+x3*x5*x6*x8+x3*x5*x7*x8+x3*x6*x7*x8+x4*x5*x6*x8+x4*x5*x7*x8+x4*x6*x7*x8+x5*x6*x7*x8+x0*x1*x8+x0*x2*x8+x0*x3*x8+x0*x4*x8+x0*x5*x8+x0*x6*x8+x0*x7*x8+x1*x2*x8+x1*x3*x8+x1*x4*x8+x1*x5*x8+x1*x6*x8+x1*x7*x8+x2*x3*x8+x2*x4*x8+x2*x5*x8+x2*x6*x8+x2*x7*x8+x3*x4*x8+x3*x5*x8+x3*x6*x8+x3*x7*x8+x4*x5*x8+x4*x6*x8+x4*x7*x8+x5*x6*x8+x5*x7*x8+x6*x7*x8)
    G1 = biBasis(I)
    G2 = gb(I)
    assert(sort gens G1 - sort gens G2 == 0) 
///

-- Test 3
TEST ///
    -- loadPackage "BIBasis"
    R = ZZ/2[x0,x1,x2,x3,x4,x5,x6,x7,x8,x9, MonomialOrder => GLex]
    J = apply(gens R, x -> x^2+x)
    QR = R/J
    I = ideal(x9+x0*x1*x2*x3*x4*x5*x6+x0*x1*x2*x3*x4*x5*x7+x0*x1*x2*x3*x4*x6*x7+x0*x1*x2*x3*x5*x6*x7+x0*x1*x2*x4*x5*x6*x7+x0*x1*x3*x4*x5*x6*x7+x0*x2*x3*x4*x5*x6*x7+x1*x2*x3*x4*x5*x6*x7+x0*x1*x2+x0*x1*x3+x0*x1*x4+x0*x1*x5+x0*x1*x6+x0*x1*x7+x0*x2*x3+x0*x2*x4+x0*x2*x5+x0*x2*x6+x0*x2*x7+x0*x3*x4+x0*x3*x5+x0*x3*x6+x0*x3*x7+x0*x4*x5+x0*x4*x6+x0*x4*x7+x0*x5*x6+x0*x5*x7+x0*x6*x7+x1*x2*x3+x1*x2*x4+x1*x2*x5+x1*x2*x6+x1*x2*x7+x1*x3*x4+x1*x3*x5+x1*x3*x6+x1*x3*x7+x1*x4*x5+x1*x4*x6+x1*x4*x7+x1*x5*x6+x1*x5*x7+x1*x6*x7+x2*x3*x4+x2*x3*x5+x2*x3*x6+x2*x3*x7+x2*x4*x5+x2*x4*x6+x2*x4*x7+x2*x5*x6+x2*x5*x7+x2*x6*x7+x3*x4*x5+x3*x4*x6+x3*x4*x7+x3*x5*x6+x3*x5*x7+x3*x6*x7+x4*x5*x6+x4*x5*x7+x4*x6*x7+x5*x6*x7+x0*x1*x2*x3*x4*x5*x6*x8+x0*x1*x2*x3*x4*x5*x7*x8+x0*x1*x2*x3*x4*x6*x7*x8+x0*x1*x2*x3*x5*x6*x7*x8+x0*x1*x2*x4*x5*x6*x7*x8+x0*x1*x3*x4*x5*x6*x7*x8+x0*x2*x3*x4*x5*x6*x7*x8+x1*x2*x3*x4*x5*x6*x7*x8+x0*x1*x2*x3*x4*x5*x8+x0*x1*x2*x3*x4*x6*x8+x0*x1*x2*x3*x4*x7*x8+x0*x1*x2*x3*x5*x6*x8+x0*x1*x2*x3*x5*x7*x8+x0*x1*x2*x3*x6*x7*x8+x0*x1*x2*x4*x5*x6*x8+x0*x1*x2*x4*x5*x7*x8+x0*x1*x2*x4*x6*x7*x8+x0*x1*x2*x5*x6*x7*x8+x0*x1*x3*x4*x5*x6*x8+x0*x1*x3*x4*x5*x7*x8+x0*x1*x3*x4*x6*x7*x8+x0*x1*x3*x5*x6*x7*x8+x0*x1*x4*x5*x6*x7*x8+x0*x2*x3*x4*x5*x6*x8+x0*x2*x3*x4*x5*x7*x8+x0*x2*x3*x4*x6*x7*x8+x0*x2*x3*x5*x6*x7*x8+x0*x2*x4*x5*x6*x7*x8+x0*x3*x4*x5*x6*x7*x8+x1*x2*x3*x4*x5*x6*x8+x1*x2*x3*x4*x5*x7*x8+x1*x2*x3*x4*x6*x7*x8+x1*x2*x3*x5*x6*x7*x8+x1*x2*x4*x5*x6*x7*x8+x1*x3*x4*x5*x6*x7*x8+x2*x3*x4*x5*x6*x7*x8+x0*x1*x2*x8+x0*x1*x3*x8+x0*x1*x4*x8+x0*x1*x5*x8+x0*x1*x6*x8+x0*x1*x7*x8+x0*x2*x3*x8+x0*x2*x4*x8+x0*x2*x5*x8+x0*x2*x6*x8+x0*x2*x7*x8+x0*x3*x4*x8+x0*x3*x5*x8+x0*x3*x6*x8+x0*x3*x7*x8+x0*x4*x5*x8+x0*x4*x6*x8+x0*x4*x7*x8+x0*x5*x6*x8+x0*x5*x7*x8+x0*x6*x7*x8+x1*x2*x3*x8+x1*x2*x4*x8+x1*x2*x5*x8+x1*x2*x6*x8+x1*x2*x7*x8+x1*x3*x4*x8+x1*x3*x5*x8+x1*x3*x6*x8+x1*x3*x7*x8+x1*x4*x5*x8+x1*x4*x6*x8+x1*x4*x7*x8+x1*x5*x6*x8+x1*x5*x7*x8+x1*x6*x7*x8+x2*x3*x4*x8+x2*x3*x5*x8+x2*x3*x6*x8+x2*x3*x7*x8+x2*x4*x5*x8+x2*x4*x6*x8+x2*x4*x7*x8+x2*x5*x6*x8+x2*x5*x7*x8+x2*x6*x7*x8+x3*x4*x5*x8+x3*x4*x6*x8+x3*x4*x7*x8+x3*x5*x6*x8+x3*x5*x7*x8+x3*x6*x7*x8+x4*x5*x6*x8+x4*x5*x7*x8+x4*x6*x7*x8+x5*x6*x7*x8+x0*x1*x8+x0*x2*x8+x0*x3*x8+x0*x4*x8+x0*x5*x8+x0*x6*x8+x0*x7*x8+x1*x2*x8+x1*x3*x8+x1*x4*x8+x1*x5*x8+x1*x6*x8+x1*x7*x8+x2*x3*x8+x2*x4*x8+x2*x5*x8+x2*x6*x8+x2*x7*x8+x3*x4*x8+x3*x5*x8+x3*x6*x8+x3*x7*x8+x4*x5*x8+x4*x6*x8+x4*x7*x8+x5*x6*x8+x5*x7*x8+x6*x7*x8)
    G1 = biBasis(I)
    G2 = gb(I)
    assert(sort gens G1 - sort gens G2 == 0) 
///

-- Test 4
TEST ///
    -- loadPackage "BIBasis"
    R = ZZ/2[x0,x1,x2,x3,x4,x5,x6,x7,x8,x9, MonomialOrder => Lex]
    J = apply(gens R, x -> x^2+x)
    QR = R/J
    I = ideal(x9+x0*x1*x2*x3*x4*x5*x6+x0*x1*x2*x3*x4*x5*x7+x0*x1*x2*x3*x4*x6*x7+x0*x1*x2*x3*x5*x6*x7+x0*x1*x2*x4*x5*x6*x7+x0*x1*x3*x4*x5*x6*x7+x0*x2*x3*x4*x5*x6*x7+x1*x2*x3*x4*x5*x6*x7+x0*x1*x2+x0*x1*x3+x0*x1*x4+x0*x1*x5+x0*x1*x6+x0*x1*x7+x0*x2*x3+x0*x2*x4+x0*x2*x5+x0*x2*x6+x0*x2*x7+x0*x3*x4+x0*x3*x5+x0*x3*x6+x0*x3*x7+x0*x4*x5+x0*x4*x6+x0*x4*x7+x0*x5*x6+x0*x5*x7+x0*x6*x7+x1*x2*x3+x1*x2*x4+x1*x2*x5+x1*x2*x6+x1*x2*x7+x1*x3*x4+x1*x3*x5+x1*x3*x6+x1*x3*x7+x1*x4*x5+x1*x4*x6+x1*x4*x7+x1*x5*x6+x1*x5*x7+x1*x6*x7+x2*x3*x4+x2*x3*x5+x2*x3*x6+x2*x3*x7+x2*x4*x5+x2*x4*x6+x2*x4*x7+x2*x5*x6+x2*x5*x7+x2*x6*x7+x3*x4*x5+x3*x4*x6+x3*x4*x7+x3*x5*x6+x3*x5*x7+x3*x6*x7+x4*x5*x6+x4*x5*x7+x4*x6*x7+x5*x6*x7+x0*x1*x2*x3*x4*x5*x6*x8+x0*x1*x2*x3*x4*x5*x7*x8+x0*x1*x2*x3*x4*x6*x7*x8+x0*x1*x2*x3*x5*x6*x7*x8+x0*x1*x2*x4*x5*x6*x7*x8+x0*x1*x3*x4*x5*x6*x7*x8+x0*x2*x3*x4*x5*x6*x7*x8+x1*x2*x3*x4*x5*x6*x7*x8+x0*x1*x2*x3*x4*x5*x8+x0*x1*x2*x3*x4*x6*x8+x0*x1*x2*x3*x4*x7*x8+x0*x1*x2*x3*x5*x6*x8+x0*x1*x2*x3*x5*x7*x8+x0*x1*x2*x3*x6*x7*x8+x0*x1*x2*x4*x5*x6*x8+x0*x1*x2*x4*x5*x7*x8+x0*x1*x2*x4*x6*x7*x8+x0*x1*x2*x5*x6*x7*x8+x0*x1*x3*x4*x5*x6*x8+x0*x1*x3*x4*x5*x7*x8+x0*x1*x3*x4*x6*x7*x8+x0*x1*x3*x5*x6*x7*x8+x0*x1*x4*x5*x6*x7*x8+x0*x2*x3*x4*x5*x6*x8+x0*x2*x3*x4*x5*x7*x8+x0*x2*x3*x4*x6*x7*x8+x0*x2*x3*x5*x6*x7*x8+x0*x2*x4*x5*x6*x7*x8+x0*x3*x4*x5*x6*x7*x8+x1*x2*x3*x4*x5*x6*x8+x1*x2*x3*x4*x5*x7*x8+x1*x2*x3*x4*x6*x7*x8+x1*x2*x3*x5*x6*x7*x8+x1*x2*x4*x5*x6*x7*x8+x1*x3*x4*x5*x6*x7*x8+x2*x3*x4*x5*x6*x7*x8+x0*x1*x2*x8+x0*x1*x3*x8+x0*x1*x4*x8+x0*x1*x5*x8+x0*x1*x6*x8+x0*x1*x7*x8+x0*x2*x3*x8+x0*x2*x4*x8+x0*x2*x5*x8+x0*x2*x6*x8+x0*x2*x7*x8+x0*x3*x4*x8+x0*x3*x5*x8+x0*x3*x6*x8+x0*x3*x7*x8+x0*x4*x5*x8+x0*x4*x6*x8+x0*x4*x7*x8+x0*x5*x6*x8+x0*x5*x7*x8+x0*x6*x7*x8+x1*x2*x3*x8+x1*x2*x4*x8+x1*x2*x5*x8+x1*x2*x6*x8+x1*x2*x7*x8+x1*x3*x4*x8+x1*x3*x5*x8+x1*x3*x6*x8+x1*x3*x7*x8+x1*x4*x5*x8+x1*x4*x6*x8+x1*x4*x7*x8+x1*x5*x6*x8+x1*x5*x7*x8+x1*x6*x7*x8+x2*x3*x4*x8+x2*x3*x5*x8+x2*x3*x6*x8+x2*x3*x7*x8+x2*x4*x5*x8+x2*x4*x6*x8+x2*x4*x7*x8+x2*x5*x6*x8+x2*x5*x7*x8+x2*x6*x7*x8+x3*x4*x5*x8+x3*x4*x6*x8+x3*x4*x7*x8+x3*x5*x6*x8+x3*x5*x7*x8+x3*x6*x7*x8+x4*x5*x6*x8+x4*x5*x7*x8+x4*x6*x7*x8+x5*x6*x7*x8+x0*x1*x8+x0*x2*x8+x0*x3*x8+x0*x4*x8+x0*x5*x8+x0*x6*x8+x0*x7*x8+x1*x2*x8+x1*x3*x8+x1*x4*x8+x1*x5*x8+x1*x6*x8+x1*x7*x8+x2*x3*x8+x2*x4*x8+x2*x5*x8+x2*x6*x8+x2*x7*x8+x3*x4*x8+x3*x5*x8+x3*x6*x8+x3*x7*x8+x4*x5*x8+x4*x6*x8+x4*x7*x8+x5*x6*x8+x5*x7*x8+x6*x7*x8)
    G1 = biBasis(I)
    G2 = gb(I)
    assert(sort gens G1 - sort gens G2 == 0) 
///

-- Test 5
TEST ///
    -- loadPackage "BIBasis"
    R = ZZ/2[u0,u1,u2,u3,u4,u5,u6,u7,u8,u9, MonomialOrder => GRevLex]
    J = apply(gens R, x -> x^2+x)
    QR = R/J
    I = ideal(u0*u1+u1*u2+u1+u2*u3+u3*u4+u4*u5+u5*u6+u6*u7+u7*u8+u8*u9,u0*u2+u1+u1*u3+u2*u4+u2+u3*u5+u4*u6+u5*u7+u6*u8+u7*u9,u0*u3+u1*u2+u1*u4+u2*u5+u3*u6+u3+u4*u7+u5*u8+u6*u9,u0*u4+u1*u3+u1*u5+u2+u2*u6+u3*u7+u4*u8+u4+u5*u9,u0*u5+u1*u4+u1*u6+u2*u3+u2*u7+u3*u8+u4*u9+u5,u0*u6+u1*u5+u1*u7+u2*u4+u2*u8+u3+u3*u9+u6,u0*u7+u1*u6+u1*u8+u2*u5+u2*u9+u3*u4+u7,u0*u8+u1*u7+u1*u9+u2*u6+u3*u5+u4+u8,u0+u1+u2+u3+u4+u5+u6+u7+u8+u9+1)
    G1 = biBasis(I)
    G2 = gb(I)
    assert(sort gens G1 - sort gens G2 == 0) 
///

-- Test 6
TEST ///
    -- loadPackage "BIBasis"
    R = ZZ/2[u0,u1,u2,u3,u4,u5,u6,u7,u8,u9, MonomialOrder => GLex]
    J = apply(gens R, x -> x^2+x)
    QR = R/J
    I = ideal(u0*u1+u1*u2+u1+u2*u3+u3*u4+u4*u5+u5*u6+u6*u7+u7*u8+u8*u9,u0*u2+u1+u1*u3+u2*u4+u2+u3*u5+u4*u6+u5*u7+u6*u8+u7*u9,u0*u3+u1*u2+u1*u4+u2*u5+u3*u6+u3+u4*u7+u5*u8+u6*u9,u0*u4+u1*u3+u1*u5+u2+u2*u6+u3*u7+u4*u8+u4+u5*u9,u0*u5+u1*u4+u1*u6+u2*u3+u2*u7+u3*u8+u4*u9+u5,u0*u6+u1*u5+u1*u7+u2*u4+u2*u8+u3+u3*u9+u6,u0*u7+u1*u6+u1*u8+u2*u5+u2*u9+u3*u4+u7,u0*u8+u1*u7+u1*u9+u2*u6+u3*u5+u4+u8,u0+u1+u2+u3+u4+u5+u6+u7+u8+u9+1)
    G1 = biBasis(I)
    G2 = gb(I)
    assert(sort gens G1 - sort gens G2 == 0) 
///

-- Test 7
TEST ///
    -- loadPackage "BIBasis"
    R = ZZ/2[u0,u1,u2,u3,u4,u5,u6,u7,u8,u9, MonomialOrder => Lex]
    J = apply(gens R, x -> x^2+x)
    QR = R/J
    I = ideal(u0*u1+u1*u2+u1+u2*u3+u3*u4+u4*u5+u5*u6+u6*u7+u7*u8+u8*u9,u0*u2+u1+u1*u3+u2*u4+u2+u3*u5+u4*u6+u5*u7+u6*u8+u7*u9,u0*u3+u1*u2+u1*u4+u2*u5+u3*u6+u3+u4*u7+u5*u8+u6*u9,u0*u4+u1*u3+u1*u5+u2+u2*u6+u3*u7+u4*u8+u4+u5*u9,u0*u5+u1*u4+u1*u6+u2*u3+u2*u7+u3*u8+u4*u9+u5,u0*u6+u1*u5+u1*u7+u2*u4+u2*u8+u3+u3*u9+u6,u0*u7+u1*u6+u1*u8+u2*u5+u2*u9+u3*u4+u7,u0*u8+u1*u7+u1*u9+u2*u6+u3*u5+u4+u8,u0+u1+u2+u3+u4+u5+u6+u7+u8+u9+1)
    G1 = biBasis(I)
    G2 = gb(I)
    assert(sort gens G1 - sort gens G2 == 0) 
///

end