1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
newPackage(
"BooleanGB",
Version => "1.0",
Date => "May 9, 2011",
Authors => {{Name => "Franziska Hinkelmann",
Email => "fhinkel@vt.edu",
HomePage => "http://www.math.vt.edu/people/fhinkel/"},
{Name => "Mike Stillman"},
{Name => "Elizabeth Arnold"}},
Keywords => {"Groebner Basis Algorithms"},
Headline => "Groebner bases for ideals in Boolean polynomial quotient rings",
DebuggingMode => false
)
exportFrom_Core {"gbBoolean"}
-- Code here
beginDocumentation()
doc ///
Key
BooleanGB
Headline
Groebner Bases for Ideals in Boolean Polynomial Quotient Ring
Description
Text
BooleanGB is a package to compute Groebner Bases in lexicographic order for polynomial ideals in the
quotient ring $\mathbb F_2[x_1, \ldots, x_n]/J$, where J is the ideal
generated by field polynomials $x_i^2 - x_i $ for $i \in \{ 1, \ldots,
n\}$. The algorithm is implemented bitwise rather than symbolically, which
reduces the computational complexity.
Example
n = 3;
R = ZZ/2[vars(0)..vars(n-1)];
J = apply( gens R, x -> x^2 + x);
QR = R/J;
I = ideal(a+b,b);
gbBoolean I
gens gb I
Caveat
BooleanGB always assumes that the ideal is in the Boolean quotient ring, i.e., $\mathbb
F_2[x_1, \ldots, x_n] / <x_1^2-x_1, \ldots, x_n^2-x_n >$, regardless of the ring in which the
ideal was generated. Thus, any ideal in the base ring is
promoted to the quotient ring automatically, even if the quotient ring has not been
defined.
SeeAlso
///
doc ///
Key
(gbBoolean, Ideal)
gbBoolean
Headline
Compute Groebner Basis for Ideals in Boolean Polynomial Quotient Ring
Usage
gbBoolean I
Inputs
I:Ideal
Outputs
J:Ideal
the reduced Groebner basis of I
Consequences
Description
Text
gbBoolean computes $J$, a reduced Groebner basis in lexicographic order
for the ideal $I$ in the Boolean quotient ring, i.e., $\mathbb F_2[x_1,
\ldots, x_n] / <x_1^2-x_1, \ldots, x_n^2-x_n >$. The algorithm is
implemented bitwise rather than symbolic, which reduces the computational
complexity.
Example
n = 3
R = ZZ/2[vars(0)..vars(n-1)]
J = apply( gens R, x -> x^2 + x)
QR = R/J
I = ideal(a+b,b)
gbBoolean I
gens gb I
Caveat
gbBoolean always assumes that the ideal is in the Boolean quotient ring, i.e., $\mathbb
F_2[x_1, \ldots, x_n] / <x_1^2-x_1, \ldots, x_n^2-x_n >$, regardless of the ring in which the
ideal was generated. Thus, gbBoolean promotes an ideal in the base ring
to the quotient ring automatically, even if the quotient ring has not been
defined.
SeeAlso
gb
///
-- These tests check the generators for equivalence
TEST ///
R = ZZ/2[vars(0..14), MonomialOrder=>Lex]
l = apply(gens R, x-> x^2+x);
QR = R/l;
I = ideal(b*k+a+o+1,a*k+b,a*c*i+c*d*i+a*i*o+c*d+1,h*i*j*l+c*h*j+i*l+d+l,b*c*d*f*n+c*d*f+b*d*n+b*c+b*f+d*f+b*n+b+c+d+e,f,a*b*g*j*n+b*g*n+a*b+b*g+b+g,e*i*m*o+e*h*i+e*i*o,d*f*g+c*f*o+f+i,f*g*j+h*m+h+j,b*d*i+d*f*j+f*i*j+k,e*o+o,d*i*k+d*i+m,d*e*k*o+d*e*k+d*g*o+e*g*o+e*k*o+d*e+e*g+g*o+n+1,a*d*e+a*e*j+a*d*m+a*e*m+d*j*m+a*m+j+o+1)
C = gb I;
B = gbBoolean I;
assert( sort gens B - sort gens C == 0 )
///
TEST ///
R = ZZ/2[a..t, MonomialOrder=>Lex]
l = apply(gens R, x-> x^2+x);
QR = R/l;
I = ideal {
b*c+1,
a*b*c*d*f*g*h*t + i*o*p*q*r*s*t + r + s,
a*c*e*i*q + d*m*o*q + f*g
};
C = gb I;
B = gbBoolean I;
assert( sort gens B - sort gens C == 0 )
///
TEST ///
R=ZZ/2[vars(0..31), MonomialOrder=>Lex]
l = apply( gens R, x -> x^2+x);
RQ = R/l
I = ideal(a);
C = gb I;
B = gbBoolean I;
assert( sort gens B - sort gens C == 0 )
///
TEST ///
R = ZZ/2[a..t, MonomialOrder=>Lex]
l = apply(gens R, x-> x^2+x);
QR = R/l;
I = ideal {
b*c+1,
a*b*c*d*f*g*h*t + i*o*p*q*r*s*t + r + s,
b*c*l*o*r*s + b*s + i + m*n*q,
a*c*e*i*q + d*m*o*q + f*g,
i + l*m*n + q*r + q +1
};
C = gb I;
B = gbBoolean I;
assert( sort gens B - sort gens C == 0 )
///
TEST ///
R = ZZ/2[a..t, MonomialOrder=>Lex]
l = apply(gens R, x-> x^2+x);
QR = R/l;
I = ideal {
b*c,
a*b*c*d*f*g*h*t + i*o*p*q*r*s*t + r + s,
b*c*l*o*r*s + b*s + i + m*n*q,
a*c*e*i*q + d*m*o*q + f*g,
i + l*m*n + q*r + q
};
C = gb I;
B = gbBoolean I;
assert( sort gens B - sort gens C == 0 )
///
TEST ///
R=ZZ/2[vars(0..31), MonomialOrder=>Lex]
l = apply( gens R, x -> x^2+x);
RQ = R/l
I = ideal(a,b, a*c+d);
C = gb I;
B = gbBoolean I;
assert( sort gens B - sort gens C == 0 )
///
TEST ///
R = ZZ/2[x,y,z, MonomialOrder=>Lex]
QR = R / ideal apply(gens R, x -> x^2 + x)
I = ideal(x+y,x)
correct = sort flatten entries gens gb I
G = sort flatten entries gens gbBoolean I
assert(correct === G )
///
TEST ///
R = ZZ/2[x,y,z, MonomialOrder=>Lex]
QR = R / ideal apply(gens R, x -> x^2 + x)
I = ideal(x*y+z)
correct = sort flatten entries gens gb I
G = sort flatten entries gens gbBoolean I
assert(correct === G )
///
TEST ///
R = ZZ/2[ vars(1..20), MonomialOrder=>Lex]
QR = R / ideal apply(gens R, x -> x^2 + x)
II3 = ideal (c*k*r + 1, b*d*h*i*n + b*h*i*n + b*d*h + b*d*i + b*i*n + d*n + b, g*h*l*o*r + g*o, j*l*m + d*m*t + l*m*t + l*t, e*k*t*u + g*k*t*u + e*g*k + e*g*u + g*k + u, m*n*q*r + k*n + n*q + m*r + 1, b*e*g*o + e*g*o*s + b*g*o + e*g*o + b*o*s + e*o*s + e*g, e*g*k*q + g*k*q*t + g*k*q + g*t + k*t, j*m*t*u + f*j*t, o*q*t*u + o*t*u, p*s*u + q*r + r*s + q + u, b*s, b*f*n*s + f*n*s + n*s*t + f*n + f, d*p + d*t, g*l*q*t + q*t, c*d*e*p*q, d*q*r*t + o*q*r + d*q + o*r + r*t + o, d*h*m*n*p + h*m*n*p, f*k*o*s*t + f*k*o*s + f*o*s*t + k*o*s*t + f*k*o + f*k*s + f*k*t + f*k + o*t + f, k*q*t + h*q + h + 1)
correctSolution = sort flatten entries gens gb( II3, Algorithm=>Sugarless)
G = sort flatten entries gens gbBoolean II3
assert( G == correctSolution )
///
TEST ///
R = ZZ/2[ vars(1..20)]
QR = R / ideal apply(gens R, x -> x^2 + x)
II5 = ideal(l,c*g*h*k*q+c*h*k*q+c*k*q+h*k*q+g*k+h*q+k+1,b*f*k*q*t+b*f*k*t+b*t+q,c*d*j*k+c*d*j*t+c*d*k*t+d*j*k+j*k*t+d*j+j*k+j,e*j*p*q*u+e*j*q*u+e*j+e*q+p*q+q,c*k*m*s*u+c*k*m*u+c*k*m+k*m*s+k*m*u+k*u+m*u+m,b*f*g*r+e*f*g*r+e*f*r+f*g+e*r,f*k*l*u+i*k*l*u+f*l*u+k*l*u+i*k+i*l+k*l+k,f*l*o+f*n+l*o+n*o+l*u,d*e*g*n+d*n+g,d*j*m*o+d*e*o+d*o+m*o+1,f*g*h*i+f*g*h+f*g*i+f*g*q+h*i+1,d*p*r*s+d*p*s+f*r+f*s+f,b*j*k*q*r+b*j*k*q+j*k*q*r+b*q,d*f*g*n+d*f*p+f*n*p+g*n*p+d*g+g*p+1,k*p*q,h*l*o+h*n*r+h*o*r+l*o*r+n*o*r+l+o,f*p*u+c*f+p*u+1,d*h+d,b*g*h+h)
correct = sort flatten entries gens gb II5 -- used 0.0001 seconds
G = sort flatten entries gens gbBoolean II5
assert( correct == G )
///
TEST ///
R = ZZ/2[ vars(1..20), MonomialOrder=>Lex]
QR = R / ideal apply(gens R, x -> x^2 + x)
II6 = ideal(b*c*e*j+b*c*j*n+b*e*j*n+c*e+c*n+c,g*k+g,d*e*f*o+d*f*o*r+d*f*o+e*f*o+d*e*r+e+1,f*s+n*s,d*e*j*o+d*e*j*q+d*j*o*q+e*j*o+d*j*q+e*o+d+o,f*i*n+f*n,f*j*l*p+f*j+j*l,e*k*n*s+e*g*s+e*n*s+g*s+g,c*p*s*t+c*j*t+s,c*k+f,b*e*f+b*e*o+b*o*t+e*o*t+b*o+f*o,b*g+f*q+q,i*m+b*t+k,e*i*l+e*i*m+h*i+h*m+e+1,r*t+1,d*m,d*f*p+e*p*q+f*p*q+d*f+d*p,e*i*m+e*i*p+i*m*p+e*m+f*p+f+i+p,e*g*h*i*u+g*h*i*u+g*h+h*i,c*q+i*q)
G = sort flatten entries gens gbBoolean II6
correctSolution = sort flatten entries gens gb (II6, Algorithm=>Sugarless)
assert(G == correctSolution )
///
TEST ///
R = ZZ/2[ vars(1..20)]
QR = R / ideal apply(gens R, x -> x^2 + x)
II4 = ideal (d*h*j + h*j*o + d*k*o + j*k*o + d*k + d + h, e*f*o*q + e*g*o + f*g*o + e*g + f*q + g*q + g + 1, h*l*n + j*n*r, q*u + f + q + 1, b*j + h*n, l*m*o + l*q, f*h*o*q + f*h*o + f*o*t + h*q*t + h + 1, g*h*p*r + g*h*r + g*p*r + h*p*r + g*r + h*r + p*r + h + m, d*k + d*r + f*r + k, b*j*o*p*s + b*j*p*s + b*j*p + b*o + b + p + 1, g*r, e*j*r*s + o*r*s + o*r + r*s + e + j + s, m*u + n*u, i*j*p*q + h*i + h*p + j + q, e*l*t*u + d*e*l + e*l*t + d*l*u + e*l*u + d, e*l*m*r + e*l*m*s + l*m*r + l*r*s + m*r*s + l*m, j*m*q*r*t + j*m*q + j*m*t, b*d*r*u + d*p*r*u + d*p*u + b*p + d*p + b*r + p, c*e*m*s, d*e*q*u + e*u + q*u + q)
GG = sort flatten entries gens gbBoolean II4
assert( GG == {1})
///
end
--------- here is the big end ----------
---------------------------------------
check "BooleanGB"
restart
load "BooleanGB.m2"
installPackage "BooleanGB"
viewHelp BooleanGB
|