1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
|
-- -*- coding: utf-8 -*-
--=========================================================================--
--=========================================================================--
--=========================================================================--
-*
Author: Bart Snapp. Revised in May 2016 by David Eisenbud and Branden Stone
This file is in the public domain.
*-
newPackage(
"Depth",
Version => "1.0",
Date => "September 2010, rev May 2016",
Authors => {
{Name => "Bart Snapp",
Email => "snapp@math.ohio-state.edu",
HomePage => "http://www.math.ohio-state.edu/~snapp/"
},
{Name => "David Eisenbud",
Email => "de@msri.org",
HomePage => "http://www.msri.org/~de"
},
{Name => "Branden Stone",
Email => "bstone@adelphi.edu",
HomePage => "http://math.adelphi.edu/~bstone/"
}
},
Headline => "aids in computations related to depth",
Keywords => {"Commutative Algebra"},
DebuggingMode => false
)
--=========================================================================--
export{
"systemOfParameters",
"regularSequenceCheck",
"isRegularSequence",
"inhomogeneousSystemOfParameters",
"isCM",
"Sparseness",
"Bound",
"Attempts",
"Seed",
"Maximal"
}
--=========================================================================--
-- Deprecated Code (Branden Stone)
-- All this does is check where the ext modules don't vanish.
--depth(Ideal,Module) := ZZ => (I,M) -> (
-- AI := (ring I)^1/I;
-- for i from 0 to dim ring M do(
-- if Ext^i(AI,M) != 0 then return i);
-- infinity
-- )
depth(Ideal,Module) := ZZ => (J,M) -> (
R := ring J;
if not isCommutative R then error "'Depth' not implemented yet for noncommutative rings.";
if R =!= ring M then error "expected modules over the same ring";
if J == ring J then return infinity;
-- Checks dimension of M
if dim M === 0 then return 0;
-- Checks if M is a rank one free module over polynomial ring
if (R^1 === M and isPolynomialRing R and isField coefficientRing R) then return codim J;
-- Checks if J is maximal ideal
-- if (ideal vars R) === J then return depth M;
-- Checks if J is primary to maximal ideal
if dim J === 0 then return depth M;
-- if dim(J + ann M) === 0 then return 0;
S := (flattenRing R)_0;
pS := presentation S;
S0 := ring pS;
m := presentation M;
MM := coker( (presentation S ** sub(target m, S0)) |sub(m,S0));
JJ := ideal(sub(gens J,S0)|pS);
AJ := S0^1/JJ;
d := dim MM;
complete resolution(AJ,LengthLimit=>d);
s := scan(0..(d-1), i -> (
-- print i;
if Ext^i(AJ,MM) != 0 then break i;
)
);
if s =!= null then return s else return d
)
TEST///
A = QQ[x_1..x_3]/ideal(x_1^2, x_1*x_2)
assert( depth A === 1 )
assert( depth(ideal(1_A),A) === infinity )
///
TEST///
S = ZZ/101[x_1..x_(9)];
J = ideal vars S;
T = S/J^5;
I = ideal vars T;
assert( depth(I,T) === 0 )
assert( depth(I,T^1) === 0 )
assert( depth T === 0 )
///
TEST///
S = ZZ/101[x_1..x_(9)]
I = minors(2, genericMatrix(S,x_1,3,3))
M = S^1/I;
J = (ideal vars S)^1;
assert( depth(J,M) === 5 )
assert( depth M === 5 )
///
TEST///
S = ZZ/101[x_1..x_(9)]
I = minors(2, genericMatrix(S,x_1,3,3))
M = S^1/I;
J = (ideal vars S)^2;
assert( depth(J,M) === 5)
///
TEST///
S = ZZ/101[x_1..x_(15)]
I = minors(3, genericMatrix(S,x_1,3,5))
M = (S/I)^1;
J = (ideal vars (S/I))^2;
assert( depth M === 12 )
assert( depth(J,M) === 12 )
///
TEST///
S = ZZ/101[x,y,z,w]
I = minors(2, matrix{{x,y,z},{y,z,w}} )
SS = S/I
assert( apply( 4, i -> (depth( ideal(vars SS)_(toList(0..i)), SS))) === {1,1,1,2} )
assert( apply( 4, i -> (depth( ideal(vars SS)_(toList(0..i)), SS^1))) === {1,1,1,2} )
///
-- Not a TEST
///
S = ZZ/101[x_1..x_(16)]
I = minors(4, genericMatrix(S,x_1,4,4))
R = S/I
J = minors(2, genericMatrix(R,x_1,4,4))
M = R^1/minors(3, genericMatrix(R,x_1,4,4));
ring J === ring M
(ideal vars ring M) === J
time depth M
time depth(J,M) -- bad
time depth(ideal vars S, S^1)
///
-----------------------------------------------------------------------------
depth(Module) := ZZ => M -> (
--depth of a module with respect to the max ideal, via finite proj dim
--gives error if the ultimate coefficient ring of R = ring M is not a field.
R := ring M;
if isHomogeneous M === false then print "-- Warning: This module is not homogeneous, computation may be incorrect.";
if not isCommutative R then error"depth undefined for noncommutative rings";
S := (flattenRing R)_0;
if not isField coefficientRing S then error"input must be a module over an affine ring";
S0 := ring presentation S;
m := sub(presentation M, S0);
COK := prune coker(sub(m,S0) | (presentation S ** target m));
numgens S0 - length res COK
-- depth(ideal gens ring M,M) -- old method
)
-----------------------------------------------------------------------------
depth(Ideal,Ring) := ZZ => (I,A) -> (
depth(I,module A)
)
-----------------------------------------------------------------------------
--depth(Ideal,QuotientRing) := ZZ => (I,A) -> (
-- R := ambient A;
-- if isField coefficientRing A and isPolynomialRing R and I == ideal gens A and isHomogeneous ideal A then (
-- d := dim R;
-- d - length res(ideal A, LengthLimit => d)) else
-- depth(I,module A)
-- )
-----------------------------------------------------------------------------
depth(Ring) := ZZ => A -> depth( A^1 )
-----------------------------------------------------------------------------
depth(Ideal,Ideal) := ZZ => (I,A) -> (
depth(I,module A)
)
-----------------------------------------------------------------------------
-- Deprecated Code (Branden Stone)
--depth(Ideal,PolynomialRing) := ZZ => (I,A) -> (
-- if isField coefficientRing A then codim I else depth(I,module A)
-- ) -- if we can compute dimensions over ZZ, then we can remove this if-then statement
-----------------------------------------------------------------------------
--=========================================================================--
regularSequenceCheck = method()
regularSequenceCheck(List, Module) := ZZ => (X,M) -> (
X = splice X;
for i from 0 to #X-1 do (
f := X_i * id_M;
if not isInjective f
then return i else M = coker f);
#X)
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
regularSequenceCheck(List, Ring) := ZZ => (X,A) -> (
regularSequenceCheck(X,A^1)
)
-----------------------------------------------------------------------------
regularSequenceCheck(Matrix, Module) := ZZ => (X,M) -> (
regularSequenceCheck(flatten entries X,M)
)
-----------------------------------------------------------------------------
regularSequenceCheck(Matrix, Ring) := ZZ => (X,A) -> (
regularSequenceCheck(flatten entries X,A)
)
--=========================================================================--
isRegularSequence = method()
isRegularSequence(List, Module) := Boolean => (X,M) -> (
if isHomogeneous matrix{X} and isHomogeneous M then (
g := reduceHilbert hilbertSeries M;
f := reduceHilbert hilbertSeries (M/ideal X);
if numerator f == 0 then return false;
R := degreesRing M;
T := R_0;
numerator f * value denominator g == (value denominator f) * product(X,i-> (1-T^(first degree i))) * numerator g
)
else
regularSequenceCheck(X,M) == #splice(X) and ideal(X)*M != M
)
-- this routine actually consists of 2 tests. In the homogeneous case,
-- we use an exercise from Eisenbud's book "Commutative algebra with a
-- view toward Algebraic Geometry." See p. 555. Otherwise the routine
-- is rather naive.
-----------------------------------------------------------------------------
--isRegularSequence(Sequence, Module) := Boolean => (X,M) -> isRegularSequence(toList X,M)
-----------------------------------------------------------------------------
isRegularSequence(Matrix, Module) := Boolean => (X,M) -> isRegularSequence(flatten entries X,M)
-----------------------------------------------------------------------------
isRegularSequence(List, Ring) := Boolean => (X,A) -> isRegularSequence(X,A^1)
-----------------------------------------------------------------------------
--isRegularSequence(Sequence, Ring) := Boolean => (X,A) -> isRegularSequence(toList X,A^1)
-----------------------------------------------------------------------------
isRegularSequence(Matrix, Ring) := Boolean => (X,A) -> isRegularSequence(X,A^1)
-----------------------------------------------------------------------------
isRegularSequence(List) := Boolean => X -> isRegularSequence(X,ring(X_0))
-----------------------------------------------------------------------------
isRegularSequence(Matrix) := Boolean => X -> isRegularSequence(X,ring X)
--=========================================================================--
inhomogeneousSystemOfParameters = method(Options => {Sparseness => .5, Bound => 1, Attempts => 100, Maximal => true})
inhomogeneousSystemOfParameters(Ideal,Ring) := Matrix => opts -> (I,A) -> (
k := coefficientRing A;
f := gens I;
r := numColumns f;
c := codim I;
if c == infinity then return map(A^1,A^0,0);
PHI := 0;
longestSeq := 0;
for i from 0 to opts.Attempts do (
phi := matrix randomMutableMatrix(r,c,opts.Sparseness,opts.Bound);
rcs := regularSequenceCheck(compress(f*phi),A);
if rcs == c then return f*phi;
if not opts.Maximal then if rcs > longestSeq then (
PHI = phi;
longestSeq = rcs;
);
);
if PHI == 0 then << "--warning: no maximal regular sequence found" <<endl;
compress(f*PHI)
)
TEST ///
A = ZZ/5051[x, y, z];
I = ideal (x, x*y, y*z);
-- the success of this test depends on the random number generator:
setRandomSeed()
assert(inhomogeneousSystemOfParameters(I,A,Bound=>100,Sparseness=>.9) - matrix {{90*y*z-2*x, -71*y*z+38*x}}==0)
///
-----------------------------------------------------------------------------
inhomogeneousSystemOfParameters(Ring) := Matrix => opts -> A -> inhomogeneousSystemOfParameters(ideal gens A,A)
inhomogeneousSystemOfParameters(Ideal) := Matrix => opts -> I -> inhomogeneousSystemOfParameters(I,ring I)
--=========================================================================--
isCM = method()
isCM(Ring) := Boolean => (A) -> (
dim(A) == depth(A) -- note we should *not* switch to modules - see depth(Ideal,QuotientRing)
)
-----------------------------------------------------------------------------
isCM(Module) := Boolean => (M) -> (
dim(M) == depth(M)
)
--=========================================================================--
--=========================================================================--
systemOfParameters = method(Options => {Density => 0, Seed => null, Attempts => 100, Verbose => false})
systemOfParameters(ZZ,Ideal) := opts -> (c,H) ->(
cd := codim H;
if c > cd then error "integer is larger than the codimension of the ideal";
if numgens H == c then return H;
--takes care of H = 0 and H principal;
I := trim ideal gens gb H;
if (n := numgens I)<c then error"Ideal has too small codimension.";
if not isHomogeneous I then error("ideal not homogeneous;
use "inhomogeneousSystemOfParameters" instead");
den := opts.Density;
att := opts.Attempts;
sgens := sort (gens trim I, DegreeOrder => Ascending, MonomialOrder => Descending);
J := opts.Seed;
if den == 0 then den = ((1+c)/(numcols sgens));
if opts.Verbose == true then (
<<"Attempts: "<<att<<" Density: "<< den<<" Seed: "<<J<<endl);
if J === null then J = ideal 0_(ring I) ;
if J != 0 and (codim J < numgens J or (gens J)%I != 0) then error"bad Seed ideal";
K := J;
c' := 0;
c'' := 0;
scan(n, i->(
c'' = codim(K = J + ideal(sgens_{i}));
if c''>c' then (
J = ideal compress gens K;
c' = c'');
if c' == c then break;
));
if c' == c then return J;
scan(att, j->(
rgens := sgens * random(source sgens, source sgens, Density => 1.0*den);
scan(n,i->(
c'' = codim(K = J + ideal(rgens_{i}));
if c''>c' then(
J = ideal compress gens K;
c' = c'';
if c' == c then break)));
if opts.Verbose == true then print j;
if c'==c then break));
if c' == c then
return J else if den == 1 then
error "no system of parameters found; try increasing Density or Attempts options" else
systemOfParameters(I,
Density => min(1.0,den+.1), Attempts =>20, Seed =>J, Verbose => opts.Verbose)
)
systemOfParameters Ideal := opts -> I ->
systemOfParameters(codim I, I,
Density => opts.Density,
Attempts => opts.Attempts,
Verbose => opts.Verbose,
Seed => opts.Seed)
systemOfParameters Ring := opts -> R ->
systemOfParameters(dim R, ideal vars R,
Density => opts.Density,
Attempts => opts.Attempts,
Verbose => opts.Verbose,
Seed => opts.Seed)
TEST///
n = 5
m=2
S = ZZ/101[x_0..x_(n-1)]
I = ideal apply (subsets(n,m), s -> product apply(s, i-> x_i))
R = S/I
setRandomSeed 0
assert(systemOfParameters(ideal vars R, Density =>.1)== ideal(37*x_0 - 10*x_1 + 16*x_2 - 10*x_3 - 47*x_4))
setRandomSeed 0
assert(systemOfParameters(R, Density =>.1)== ideal(37*x_0 - 10*x_1 + 16*x_2 - 10*x_3 - 47*x_4))
///
TEST///
S = ZZ/101[a]
J = ideal"a-a2,a+a2"
assert( systemOfParameters(1,J) === ideal "a" )
assert( isRegularSequence gens systemOfParameters J === true)
///
TEST///
S = ZZ/101[a,b,c]
I = ideal"cb,b2,ab,a2"
assert( systemOfParameters I == ideal"a2,b2" )
assert( systemOfParameters(codim I, I) == ideal"a2,b2" )
assert( systemOfParameters(codim I, I, Density => 1, Attempts =>2) == ideal"a2,b2" )
assert( isRegularSequence gens systemOfParameters I === true)
I = ideal"cb,b2,a2"
assert( systemOfParameters(1,I) == ideal"a2" )
assert( isRegularSequence gens systemOfParameters I === true)
I = ideal"ab,ac,bc"
sopI = systemOfParameters(codim I, I)
assert( numgens sopI == codim I )
assert( radical sopI == I )
assert( isRegularSequence gens systemOfParameters I === true)
--systemOfParameters(I, Attempts => 1, Density => .01)
--systemOfParameters(I, Attempts => 10000, Density => .01)
///
TEST///
n=5;m=2;
S = ZZ/101[vars(0..n-1)]
I = ideal apply(numgens S,
j-> product flatten( (for k to j-1 list S_k)| (for k from j+1 to numgens S-1 list S_k)))
sopI = systemOfParameters(I, Density => .2, Attempts => 1000)
assert( numgens sopI == codim I )
assert( radical sopI == I )
assert( isRegularSequence gens systemOfParameters I === true)
///
TEST///
n=5;m=2;
S = ZZ/101[vars(0..n-1)]
L = toList(0..n-1)
subs = subsets(L,m)
I = ideal(apply(subs, p -> product(p, i-> S_i)))
sopI = systemOfParameters(I, Density => .2, Attempts => 1000)
assert( numgens sopI == codim I )
assert( radical sopI == I )
assert( isRegularSequence gens systemOfParameters I === true)
-- systemOfParameters(I, Density => .2, Attempts => 1000, Verbose => true)
-- systemOfParameters(I, Verbose =>true)
///
--=========================================================================--
--=========================================================================--
beginDocumentation() -- the start of the documentation
-----------------------------------------------------------------------------
doc ///
Key
Depth
Headline
Finds the depth of a module or ideal, and systems of parameters in an ideal
Description
Text
There are two major groups of routines: one for finding the depth of an
ideal or module or ring,or the depth of an ideal on a module; and the other
for finding relatively sparse systems of homogeneous parameters in an ideal
(there is an inhomogeneous version too.)
The depth of an ideal on a module is a fundamental invariant, a kind
of arithmetic version of codimension. In many local or graded cases one is interested
in the depth of the maximal ideal on the module, and then we speak just of the
depth of the module (or, when the module is the ring itself, the depth of the ring.)
Over a regular ring, depth is most efficiently computed using the Auslander-Buchsbaum
formula depth M = dim R - pdim M, where pdim is the projective dimension. In general,
depth(I,M) = min {i | Ext^i(R/I,M) != 0}. Both these methods are incorporated.
Depth can be computed from regular sequences, which are systems of parameters.
The other routines in this package try probabilistically to find relatively
sparse systems of parameters; the maximum length of
such a system is equal to the codimension of the ideal, so
(inhomogeneousSystemOfParameters,Ideal) and (systemOfParameters, Ideal), without
further arguments, look for regular sequences of length codim I.
To find such sequences, one can simply take an appropriate number of
random linear combinations of the generators of the ideal, and
this is what's done by inhomogeneousSystemOfParameters. Since being a
system of parameters is a matter of certain elements not being in certain prime ideals, this
succeeds with very high probability over any field of reasonable size. But it
produces inhomogeneous elements. When the ideal is
homogeneous, one generally wants a homogeneous system of parameters;
this is provided, again probabilistically, by the routine systemOfParameters.
Here is an example computing depths of modules (that is, the depths of the
maximal ideal on the module:
Example
S = ZZ/101[a,b,c,d]
K = koszul vars S
apply(numgens S, i-> depth coker K.dd_(i+1))
Text
and here is one computing systems of parameters. The "Density" (a number between
0 and 1) is a measure of the sparseness sought, and "Attempts" bounds
the number of probabilistic attempts.
Example
I = ideal"ab,bc,cd2,da"
codim I
setRandomSeed 0
systemOfParameters(I, Density => .1, Attempts => 1000, Verbose => true)
inhomogeneousSystemOfParameters I
Caveat
The systemOfParameters code could be improved by working one degree at a time,
using a knowledge of the codim of the ideal generated by elements of degrees <=d
for each d.
SeeAlso
depth
inhomogeneousSystemOfParameters
systemOfParameters
///
------------------------------------------------------------
-- DOCUMENTATION systemOfParameters
------------------------------------------------------------
doc ///
Key
systemOfParameters
Seed
(systemOfParameters, Ideal)
(systemOfParameters, Ring)
(systemOfParameters, ZZ, Ideal)
[systemOfParameters,Attempts]
[systemOfParameters,Density]
[systemOfParameters,Verbose]
[systemOfParameters,Seed]
Headline
finds a relatively sparse homogeneous system of parameters of minimal degree in an ideal
Usage
J = systemOfParameters I
J = systemOfParameters (i,I)
Inputs
I:Ideal
generated by homogeneous elements
i:ZZ
Verbose => Boolean
Attempts => ZZ
Density => RR
or QQ or ZZ; will be converted to RR
Seed => null
Seed => Ideal
Outputs
J:Ideal
generated by a homogeneous system of parameters of length i contained in I
Description
Text
First sorts the generators of trim ideal gens gb I by ascending degree, ascending monomial
order. Looks first for as much of a system of parameters among the generators as possible,
then tries up to Attempts sparse random combinations of given Density.
The default value of Density is (1+codim I)/(numgens trim I).
If the option Seed is not
null then it should be an ideal of ring I generated by a part of a sop in
I, and it is used as the beginning of the system of parameters constructed.
If no sop is found after Attempts tries, and the Density is < 1 then the Density
is increased by .1, and 20 more attempts are made. If the Density is already == 1,
then the program stops with an error.
Example
S = ZZ/101[a,b,c,d]
I = ideal"ab,bc,cd,da"
codim I
setRandomSeed 0
inhomogeneousSystemOfParameters I
systemOfParameters I
systemOfParameters(I, Density => .1, Attempts => 1000, Verbose => true)
Caveat
Could be rewritten to take into account the codimensions of the sub ideals generated
by the elements of degree up to d for each d.
The routine tries to find generators among linear combinations, with field coefficients,
of generators of I; but over very small fields there may not be any! For example
there is no linear form that is a parameter in the 1-dimensional
ring
R = ZZ/2[x,y]/intersect(ideal"x", ideal"x+y", ideal"y")
SeeAlso
regularSequenceCheck
Depth
inhomogeneousSystemOfParameters
///
-----------------------------------------------------------------------------
doc///
Key
(depth, Ideal, Ring)
(depth, Ring)
(depth, Ideal, Module)
(depth, Module)
(depth, Ideal, Ideal)
Headline
computes the depth of a ring
Usage
d = depth(I,M)
d = depth(M)
d = depth(I,I)
Inputs
I:Ideal
M:Ring
or Module or Ideal
Outputs
d:ZZ
the I-depth of a ring, module, or ideal
Description
Text
The function depth(I,M) computes the I-depth of a ring, module, or ideal. In the most general
setting, it does this by computing Ext^i(A^1/I,M) for an A-Module M, and noting where it does not vanish.
If the ring in question is a polynomial ring over a field, then it merely computes the
codimension of I.
Example
A = QQ[x_1..x_3]/ideal(x_1^2, x_1*x_2)
depth A
Text
If I contains a unit, then depth(I,A) outputs infinity.
Example
depth(ideal(1_A),A)
Text
This symbol is provided by the package Depth.m2
///
-----------------------------------------------------------------------------
document {
Key => {regularSequenceCheck,
(regularSequenceCheck,List,Module),
(regularSequenceCheck,List,Ring),
(regularSequenceCheck,Matrix,Module),
(regularSequenceCheck,Matrix,Ring)
},
Headline => "how much of a list is regular",
Usage => "regularSequenceCheck(X,A)",
Inputs => {
"X" => {"a ", TO "List", " or ", TO "Matrix"},
"A" => {"a ", TO "Ring", " or ", TO "Module"}
},
Outputs => {ZZ},
Caveat => {TT "regularSequenceCheck", " merely checks the injectivity of the maps in question.
It does not check to see if ", TT "XA = A", "."},
"Given a list ", TT "X", ", the function ", TT "regularSequenceCheck",
" gives an integer indicating how many initial elements of a ", TT "List", " form a regular sequence.",
EXAMPLE lines ///
A = ZZ[x_1..x_4]/(x_4^2)
regularSequenceCheck({x_1..x_4},A)
///,
PARA {
"This symbol is provided by the package ", TO Depth, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {isRegularSequence,
(isRegularSequence,List,Ring),
(isRegularSequence,Matrix,Module),
(isRegularSequence,List,Module),
(isRegularSequence,Matrix,Ring),
(isRegularSequence,Matrix),
(isRegularSequence,List)},
Headline => "whether a list is regular over a ring or module",
Usage => "isRegularSequence(X,A) or isRegularSequence(X) ",
Inputs => {
"X" => {"a ", TO "List", " or ", TO "Matrix"},
"A" => {"a ", TO "Ring", " or ", TO "Module"}
},
Outputs => {Boolean},
"Given a list ", TT "X", ", the function ", TT "isRegularSequence",
" tells if ", TT "X", " forms a regular sequence. If ", TT "X",
" consists of homogeneous elements, it does this by comparing
the Hilbert series of ", TT "A", "
and the Hilbert series of ", TT "A/XA", ". Otherwise it checks
the injectivity of the maps defined by multiplication
by the elements of ", TT "X", " and also checks if ", TT "XA
= A", ".",
EXAMPLE lines ///
A = ZZ/2[x, y, z];
X1 = {x, y*(x-1), z*(x-1)};
isRegularSequence X1
X2 = {z*(x-1), y*(x-1), x};
isRegularSequence X2
X3 = {1_A, x, y};
isRegularSequence X3
///,
PARA {
"This symbol is provided by the package ", TO Depth, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {inhomogeneousSystemOfParameters,
(inhomogeneousSystemOfParameters,Ideal,Ring),
(inhomogeneousSystemOfParameters,Ring),
(inhomogeneousSystemOfParameters,Ideal),
Attempts,
Bound,
Sparseness,
Maximal,
[inhomogeneousSystemOfParameters,Attempts],
[inhomogeneousSystemOfParameters,Bound],
[inhomogeneousSystemOfParameters,Maximal],
[inhomogeneousSystemOfParameters,Sparseness]},
Headline => "generates an inhomogeneous system of parameters",
Usage => "inhomogeneousSystemOfParameters(I,A)",
Inputs => {
"I" => Ideal,
"A" => Ring,
Attempts => ZZ => "number of attempts made to generate an inhomogeneous system of parameters",
Bound => ZZ => "bound on the value of the random coefficients",
Sparseness => RR => "between 0 and 1 giving the frequency of the coefficients being equal to zero",
Maximal => Boolean => "whether to insist on searching for a maximal inhomogeneous system of parameters"
},
Outputs => {Matrix},
"Given a ring and an ideal, ", TT "inhomogeneousSystemOfParameters", " attempts
to generate an inhomogeneous system of parameters contained in ", TT "I", ". The
algorithm is based on one found in Chapter 5.5 of W. Vasconcelos'
book: ", EM "Computational Methods in Commutative Algebra and
Algebraic Geometry", ".",
EXAMPLE lines ///
A = ZZ/5051[x, y, z];
I = ideal (x, x*y, y*z);
X = inhomogeneousSystemOfParameters(I,A)
isRegularSequence(X,A)
///,
"Here are examples with optional inputs:",
EXAMPLE lines ///
A = ZZ/5051[x, y, z];
I = ideal (x, x*y, y*z);
inhomogeneousSystemOfParameters(I,A,Attempts=>1,Bound=>100,Sparseness=>.9)
///,
"Here are examples with the optional input ", TT "Maximal => false", ":",
EXAMPLE lines ///
x = symbol x; y = symbol y;
n = 2;
A = ZZ/101[x_(1,1)..x_(n,n),y_(1,1)..y_(n,n)];
X = transpose genericMatrix(A,n,n);
Y = transpose genericMatrix(A,y_(1,1),n,n);
b = ideal(X*Y - Y*X);
B = A/b;
inhomogeneousSystemOfParameters(B,Attempts=>1,Maximal=>false)
///,
PARA {
"This symbol is provided by the package ", TO Depth, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {isCM,
(isCM,Module),
(isCM,Ring)},
Headline => "whether a ring or module is Cohen-Macaulay",
Usage => "isCM(A)",
Inputs => {
"A" => {"a ", TO "Ring", " or ", TO "Module"}
},
Outputs => {TO "Boolean"},
Caveat => {"Typically when one thinks of a Cohen-Macaulay ring or
module, one is in the local case. Since the local case is not yet
implemented into Macaulay 2, we compute over the ideal generated by by ", TO (gens, Ring), "."},
"This command merely checks if the depth of ", TT "A", " equals the Krull dimension of ", TT"A",".",
EXAMPLE lines ///
A = ZZ/2[x,y,z];
isCM(A)
A = ZZ/2[x,y]/(x^2,x*y);
isCM(A)
A = ZZ/101[a_1,a_2,b_1,b_2,c_1]/ideal(a_1*b_1,a_2*b_2,b_1*c_1);
isCM(A)
///,
PARA {
"This symbol is provided by the package ", TO Depth, "."
}
}
--=========================================================================--
--=========================================================================--
--=========================================================================--
TEST ///
A = QQ[x,y,z]/ideal(x^2)
m = ideal vars A
assert(depth(m,A) == 2)
depth(ideal(y),A)
-- we don't compute dimensions over ZZ, for now.
-- A = ZZ[x,y]
-- m = ideal vars A
-- depth(m,A)
///
TEST ///
A = ZZ/101[x_1..x_4]
assert(regularSequenceCheck({x_1..x_4},A^1)==4)
///
TEST///
A = ZZ/2[x,y,z];
assert(isCM(A) == true)
A = ZZ/2[x,y]/(x^2,x*y);
assert(isCM(A) == false)
///
TEST///
n = 2;
A = ZZ/101[x_(1,1)..x_(n,n),y_(1,1)..y_(n,n)];
X = genericMatrix(A,n,n);
Y = genericMatrix(A,y_(1,1),n,n);
b = ideal(X*Y - Y*X);
B = A/b;
setRandomSeed 0
assert(numcols inhomogeneousSystemOfParameters(B,Attempts=>1,Maximal=>false) == 6)
assert(depth B == dim B)
A = ZZ/5051[x, y, z];
I = ideal (x, x*y, y*z);
assert (0==inhomogeneousSystemOfParameters(I,A,Attempts=>1,Bound=>100,Sparseness=>.9)- matrix {{88*y*z, -34*x}})
///
TEST///
S = ZZ/101[a,b,c,d]
K = koszul vars S
apply(numgens S, i-> depth coker K.dd_(i+1))
I = ideal"ab,bc,cd,da"
codim I
setRandomSeed 0
inhomogeneousSystemOfParameters I
systemOfParameters
systemOfParameters(I, Density => .1, Attempts => 1000, Verbose => true)
///
TEST///
S = QQ[a..e]
m = ideal gens S
assert(depth (S^1/m) == 0)
depth QuotientRing := A -> depth (A^1)
assert (depth (S/m) == 0)
assert(depth(S^1/m) == 0)
assert(depth( (S/m)^1) ==0)
///
TEST///
setRandomSeed 0
R = ZZ/101[a,b]/ideal(a*b)
I = ideal(a,b)
assert(systemOfParameters I == ideal"24a - 36b")
///
end--
restart
uninstallPackage "Depth"
restart
installPackage "Depth"
check Depth
viewHelp Depth
|