1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
|
-- -*- coding: utf-8 -*-
newPackage (
"DiffAlg",
Version => "1.5",
Date => "October, 2018",
Authors => {
{ Name => "Manuel Dubinsky",
Email => "manudubinsky@gmail.com",
HomePage => ""},
{ Name => "Cesar Massri",
Email => "cmassri@caece.edu.ar",
HomePage => ""},
{ Name => "Ariel Molinuevo",
Email => "amoli@dm.uba.ar",
HomePage => ""},
{ Name => "Federico Quallbrunn",
Email => "fquallb@dm.uba.ar",
HomePage => ""}
},
Headline => "specialized routines for differential forms",
Keywords => {"Commutative Algebra"},
Configuration => {
"BaseRing" => null,
"VariableName" => "x",
"DiffName" => "d",
"FieldName" => "a"
},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "DiffAlg: a Differential algebra package",
"acceptance date" => "19 November 2018",
"published article URI" => "https://msp.org/jsag/2019/9-1/p02.xhtml",
"published article DOI" => "10.2140/jsag.2019.9.11",
"published code URI" => "https://msp.org/jsag/2019/9-1/jsag-v9-n1-x02-DiffAlg.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/DiffAlg.m2",
"release at publication" => "fb0887a15f6ff5ec7f940f60ad46f738412924cd", -- git commit number in hex
"version at publication" => "1.5",
"volume number" => "9",
"volume URI" => "https://msp.org/jsag/2019/9-1/"
}
)
export {
"newForm",
"moduliIdeal",
"singularIdeal",
"logarithmicForm",
"newField",
"dist",
"isInvolutive",
"linearComb",
"radial",
"genKer",
"genIm",
"DiffAlgElement",
"DiffAlgForm",
"DiffAlgField",
"DiffAlgDistribution",
"projectivize"
}
DiffAlgElement = new Type of HashTable;
DiffAlgForm = new Type of DiffAlgElement;
DiffAlgField = new Type of DiffAlgElement;
DiffAlgDistribution = new Type of List;
LL := (options DiffAlg).Configuration#"BaseRing";
VAR := (options DiffAlg).Configuration#"VariableName";
VARD := (options DiffAlg).Configuration#"DiffName";
VARA := (options DiffAlg).Configuration#"FieldName";
QQi := QQ["i"];
if LL === null then LL = toField (QQi / (QQi_0^2+1))
net DiffAlgElement := Net => w -> pretty w#"f"
toString DiffAlgElement := String => w -> toString w#"f"
ring DiffAlgElement := Ring => w -> ring w#"f"
sub (DiffAlgElement,Ring) := RingElement => (w,R) -> sub(w#"f",R)
degree(DiffAlgElement) := List => w -> (
deg := if w#"f" == 0 then {0,0} else degree(w#"f");
n := (numgens ring w) - 1;
if class w === DiffAlgForm then {n,deg_0,deg_1} else {n,deg_1}
)
RingElement * DiffAlgElement := DiffAlgElement => (c,e) -> new class e from {"f"=> sub(c,ring e#"f")*(e#"f")}
ZZ * DiffAlgElement := DiffAlgElement => (c,w) -> sub(c,ring w#"f")*w
QQ * DiffAlgElement := DiffAlgElement => (c,w) -> sub(c,ring w#"f")*w
DiffAlgElement * ZZ := DiffAlgElement => (w,c) -> c*w
DiffAlgElement * QQ := DiffAlgElement => (w,c) -> c*w
DiffAlgElement * RingElement := DiffAlgElement => (w,c) -> c*w
DiffAlgElement / ZZ := DiffAlgElement => (w,c) -> (1/c)*w
DiffAlgElement / QQ := DiffAlgElement => (w,c) -> (1/c)*w
DiffAlgElement / RingElement := DiffAlgElement => (w,c) -> (1/c)*w
- DiffAlgElement := DiffAlgElement => w -> (-1)*w
DiffAlgElement + DiffAlgElement := DiffAlgElement => (w,e) -> add(w,e)
DiffAlgElement - DiffAlgElement := DiffAlgElement => (w,e) -> w + (-e)
String | DiffAlgElement := String => (t,e) -> t|"("|toString e|")"
DiffAlgElement | String := String => (e,t) -> "("|toString e|")"|t
DiffAlgForm ^ DiffAlgForm := DiffAlgForm => (w,e) -> wedge(w,e)
DiffAlgForm * DiffAlgForm := DiffAlgForm => (w,e) -> w^e
DiffAlgField | DiffAlgField := DiffAlgField => (X,Y) -> bracket(X,Y)
List * DiffAlgForm := DiffAlgForm => (L,w) -> pullback(L,w)
DiffAlgForm _ DiffAlgField := DiffAlgForm => (w,X) -> contraction(w,X)
DiffAlgField _ DiffAlgForm := DiffAlgForm => (X,w) -> w_X
newElement = method();
newElement(List,String,Boolean) := DiffAlgElement => (L,varName,isForm) -> (
n := L_0;
r := L_1;
d := L_2;
x := getSymbol VAR;
dx := getSymbol (if isForm then VARD|VAR else VARA|VAR);
a := getSymbol varName;
C := LL[a_0 .. a_(binomial(n+d,d) * binomial(n+1,r)-1)];
W := C[x_0 .. x_n][dx_0 .. dx_n, SkewCommutative => isForm];
w := ((basis(d,coefficientRing W) ** basis(r,W)) * transpose(vars(C)))_(0,0);
new DiffAlgElement from {"f" => w}
)
newElement(String,Boolean) := DiffAlgElement => (expr,isForm) -> (
x := getSymbol VAR;
dx := getSymbol (if isForm then VARD|VAR else VARA|VAR);
aux1 := separateRegexp ("[*+^()-/ i]",expr);
aux2 := select(aux1,s->match(VAR|"_",s));
aux2 = apply(aux2,s->replace(VAR,"",s));
aux2 = apply(aux2,s->replace(VARD,"",s));
aux2 = apply(aux2,s->replace(VARA,"",s));
aux2 = apply(aux2,s->replace("_","",s));
n := max (apply(aux2,value) | {0});
varList := select(aux1,s->(not match("^[0-9]",s)) and (not match(VAR|"_",s)));
varList = toList set select(varList,s->#s>0);
T := (if #varList > 0 then LL[apply(varList,value)][x_0 .. x_n][dx_0 .. dx_n, SkewCommutative => isForm]
else LL[x_0 .. x_n][dx_0 .. dx_n, SkewCommutative => isForm]);
new DiffAlgElement from {"f" => sub(value(expr),T)}
)
newForm = method();
newForm(ZZ,ZZ,ZZ,String) := DiffAlgForm => (n,r,d,varName) -> new DiffAlgForm from newElement({n,r,d},varName,true)
newForm String := DiffAlgForm => expr -> new DiffAlgForm from newElement(expr,true)
newField = method();
newField(ZZ,ZZ,String) := DiffAlgField => (n,d,varName) -> new DiffAlgField from newElement({n,1,d},varName,false)
newField String := DiffAlgField => expr -> new DiffAlgField from newElement(expr,false)
wedge = method();
wedge(DiffAlgForm,DiffAlgForm) := DiffAlgForm => (w, e) -> (
T := extendRing(w,e);
new DiffAlgForm from {"f"=>sub(w#"f",T) * sub(e#"f",T)}
)
add = method();
add(DiffAlgElement,DiffAlgElement) := DiffAlgElement => (w, e) -> (
if not uniform {w,e} then (print "ERROR: Add";return 0);
T := extendRing(w,e);
new class w from {"f" => sub(w#"f",T) + sub(e#"f",T)}
)
diff DiffAlgForm := DiffAlgForm => form -> (
w := form#"f";
x := getSymbol VAR;
dx := getSymbol (VARD|VAR);
n := numgens ring w;
dw := for i in (flatten entries monomials w) list
for j in 0..(n-1) list
diff((x_j)_(ring w),coefficient(i,w))*(dx_j)_(ring w)*i;
new DiffAlgForm from {"f"=>sub(sum flatten dw,ring w)}
)
logarithmicForm = method(Options => {Projective => false});
logarithmicForm(ZZ,List,String) := DiffAlgForm => o -> (n,l,varName) -> (
F := for i in 0..#l-1 list newForm(n,0,l_i, varName | (i+1));
x := getSymbol VAR;
dx := getSymbol (VARD|VAR);
a := getSymbol (varName | 0);
C := LL[a_0..a_(#l-1)];
R := C[x_0..x_(n-1)][dx_0..dx_(n-1),SkewCommutative => true];
term := new DiffAlgForm from {"f"=>(a_0)_R};
for j in drop(0..#l-1,{0,0}) do term = term ^ (F_j);
out := term ^ (diff(F_0));
for i in 1..#l-1 do (
term := new DiffAlgForm from {"f"=>(a_i)_R};
for j in drop(0..#l-1,{i,i}) do term = term ^ (F_j);
out = out + term ^ (diff(F_i));
);
if o#Projective then (
proj := 0_C;
for i in 1..#l-1 do proj = proj + (a_i)_C*l_i/l_0;
ccr := coefficientRing coefficientRing ring out;
newForm toString (sub(out#"f",{(a_0)_ccr => sub(-proj,ccr)}))
) else out
)
linearComb = method();
linearComb(List,String) := DiffAlgElement => (L,varName) -> (
if not all(L,s->instance(s,DiffAlgElement)) or not uniform L then (print "ERROR: linearComb";return 0;);
x := getSymbol VAR;
dx := getSymbol (if class L_0 === DiffAlgForm then VARD|VAR else VARA|VAR);
a := getSymbol varName;
n := max apply(L,s->(degree s)_0);
eAux := newField(#L-1,0,varName);
T := extendRing(L|{eAux});
C := coefficientRing coefficientRing ring eAux;
new class L_0 from {"f" => sum apply(gens C,L,(i,j)->sub(i,T)*sub(j,T))}
)
pullback = method();
pullback(List,DiffAlgForm) := DiffAlgForm => (L,w) -> (
x := getSymbol VAR;
dx := getSymbol (VARD|VAR);
if not uniform L or class L_0 =!= DiffAlgForm or
numgens ring w != #L or sum apply(L,s->(degree s)_1) != 0 then (print "ERROR: Pull-Back";return 0;);
T := extendRing(flatten {w,L});
hash := flatten for i in 0..#L-1 list
{(x_i)_(coefficientRing T)=>sub(L_i,T), (dx_i)_T => sub(diff(L_i),T)};
new DiffAlgForm from {"f" => sub(sub(w,T),hash)}
)
extendRing = method();
extendRing(DiffAlgElement,DiffAlgElement) := Ring => (w,e) -> extendRing({w,e})
extendRing List := Ring => L -> (
x := getSymbol VAR;
dx := getSymbol (if class L_0 === DiffAlgForm then VARD|VAR else VARA|VAR);
ccr := coefficientRing coefficientRing ring L_0#"f";
varsT := gens ccr;
maxGens := numgens ring L_0#"f";
for j in 1..#L-1 do (
varsJ := gens coefficientRing coefficientRing ring L_j#"f";
if (maxGens < numgens ring L_j#"f") then maxGens = numgens ring L_j#"f";
for i in varsJ do if sub(i,LL[varsT]) == 0 then varsT = append(varsT,i);
);
if #varsT == 0 then LL[x_0 .. x_(maxGens-1)][dx_0 .. dx_(maxGens-1), SkewCommutative => class L_0 === DiffAlgForm]
else LL[varsT][x_0 .. x_(maxGens-1)][dx_0 .. dx_(maxGens-1), SkewCommutative => class L_0 === DiffAlgForm]
)
radial = method();
radial ZZ := DiffAlgField => n -> (
x := getSymbol VAR;
ax := getSymbol (VARA|VAR);
W := LL[x_0 .. x_n][ax_0 .. ax_n];
new DiffAlgField from {"f" => (basis(1,coefficientRing W)*transpose(basis(1,W)))_(0,0)}
)
contraction = method();
contraction(DiffAlgForm,DiffAlgField) := DiffAlgForm => (wF,X) -> (
x := getSymbol VAR;
dx := getSymbol (VARD|VAR);
ax := getSymbol (VARA|VAR);
T := extendRing(wF,X);
maxGens := numgens T;
aux := newField("ax_" | (maxGens - 1));
X = X + aux - aux;
w := sub(wF#"f",T);
out := 0_T;
for j in (flatten entries monomials w) do (
monomialExp := (listForm(j))_0_0;
sign := 1_T;
for i in 0..maxGens-1 do
if (monomialExp_i==1) then (
newTerm := sub(j,{(dx_i)_T => sub(coefficient((ax_i)_(ring X),X#"f"),T)});
out = out + coefficient(j,w)*newTerm*sign;
sign = sign * (-1)_T;
);
);
new DiffAlgForm from {"f" => out}
)
bracket = method();
bracket(DiffAlgField,DiffAlgField) := DiffAlgField => (XF,YF) -> (
x := getSymbol VAR;
ax := getSymbol (VARA|VAR);
T := extendRing(XF,YF);
maxGens := numgens T;
X := sub(XF#"f",T);
Y := sub(YF#"f",T);
out := sum flatten for i in 0..maxGens-1 list
for j in 0..maxGens-1 list
(coefficient((ax_j)_(ring X),X)*diff((x_j)_(ring Y),coefficient((ax_i)_(ring Y),Y))-
coefficient((ax_j)_(ring Y),Y)*diff((x_j)_(ring X),coefficient((ax_i)_(ring X),X)))*(ax_i)_(T);
new DiffAlgField from {"f" => out}
)
random DiffAlgElement := DiffAlgElement => o -> elem -> random(elem,ZZ,Density => o#Density, Height => o#Height)
random(DiffAlgElement,Ring) := DiffAlgElement => o -> (elem,R) -> (
C := coefficientRing coefficientRing ring elem;
if numgens(C) == 0 then return elem;
L := fillMatrix(mutableMatrix(R,1,numgens C), Density => o#Density, Height => o#Height) -
fillMatrix(mutableMatrix(R,1,numgens C), Density => o#Density, Height => o#Height);
w := sub(elem#"f",apply(gens C,flatten entries L,(i,j)->i=>j));
if w == 0 then (print "ERROR: Random";);
n := numgens ring elem;
x := getSymbol VAR;
dx := getSymbol (if class elem === DiffAlgForm then VARD|VAR else VARA|VAR);
T := LL[x_0..x_(n-1)][dx_0..dx_(n-1),SkewCommutative => class elem === DiffAlgForm];
new class elem from {"f" => sub(w,T)}
)
singularIdeal = method();
singularIdeal DiffAlgElement := Ideal => elem -> (
w := elem#"f";
l := for i in (flatten entries monomials w) list coefficient(i,w);
sub(ideal flatten l,coefficientRing ring w)
)
moduliIdeal = method();
moduliIdeal DiffAlgElement := Ideal => elem -> (
w := elem#"f";
l := for i in (flatten entries monomials w) list
for j in (flatten entries monomials(coefficient(i,w))) list
coefficient(j,coefficient(i,w));
sub(ideal flatten l,coefficientRing coefficientRing ring w)
)
homogenize DiffAlgElement := DiffAlgElement => e -> (
n := (degree e)_0;
x := getSymbol VAR;
dx := getSymbol (if class e === DiffAlgForm then VARD|VAR else VARA|VAR);
R := (coefficientRing coefficientRing ring e)[dx_0..dx_(n+1),x_0..x_(n+1)];
c := max apply(terms sub(e,R),s->(degree s)_0);
s := concatenate (for i in terms(sub(e,R)) list "+("| toString i | ")*"|VAR|"_"|n+1|"^"|c-((degree i)_0));
if class e === DiffAlgForm then (
newForm s
) else newField(s)
)
projectivize = method();
projectivize DiffAlgElement := DiffAlgElement => e -> (
n := (degree e)_0;
x := getSymbol VAR;
dx := getSymbol (if class e === DiffAlgForm then VARD|VAR else VARA|VAR);
R := (coefficientRing coefficientRing ring e)[dx_0..dx_(n+1),x_0..x_(n+1)];
c := max apply(terms sub(e,R),s->(degree s)_0);
s := concatenate (for i in terms(sub(e,R)) list "+("| toString i | ")*"|VAR|"_"|n+1|"^"|c-((degree i)_0));
if class e === DiffAlgForm then (
r := radial (n+1);
aux := (newForm s)_r;
if aux#"f" == 0 then newForm s else
newForm(VAR|"_"|n+1|"*("|s|")-"|VARD|VAR|"_"|n+1|"*"|aux)
) else newField(s)
)
isHomogeneous DiffAlgElement := Boolean => e-> (
n := (degree e)_0;
x := getSymbol VAR;
dx := getSymbol (if class e === DiffAlgForm then VARD|VAR else VARA|VAR);
R := (coefficientRing coefficientRing ring e)[dx_0..dx_(n+1),x_0..x_(n+1)];
c := max apply(terms sub(e,R),s->(degree s)_0);
all(terms(sub(e,R)),i -> (degree i)_0 == c)
)
genKer = method();
genKer (DiffAlgElement,DiffAlgElement) := List => (expr,var) -> (
x := getSymbol VAR;
dx := getSymbol (if class var === DiffAlgForm then VARD|VAR else VARA|VAR);
C := coefficientRing coefficientRing ring expr;
B := coefficientRing coefficientRing ring var;
otherVars := reverse sort toList (set(gens C) - set(apply(gens B,s->sub(s,C))));
cT := (if #otherVars > 0 then LL[otherVars] else LL);
n := numgens ring expr;
R := cT[x_0..x_(n-1)][dx_0..dx_(n-1),SkewCommutative => class var === DiffAlgForm];
T := R[gens B];
TAux := LL[gens ring expr|gens coefficientRing ring expr][gens coefficientRing coefficientRing ring expr];
if (expr#"f" == 0) or ((degree sub(expr,TAux))_0 != 1) then (
print "ERROR: genKer, expression must be linear and non-zero";
return {};
);
I := sub(moduliIdeal expr,T);
if ideal gens gb I == 1 then (
print "ERROR: genKer, the system has no solutions";
return {};
);
Bt := apply(gens B,s->sub(s,T));
L := apply(Bt,s -> s => sub(s % I,T));
L0 := apply(Bt,s -> s => sub(s % I,T) % (ideal Bt));
vAux := sub(sub(var,T),L);
vP := sub(vAux,L0);
v := vAux - vP;
J := ideal apply(Bt, s -> coefficient(s,v));
d := degree var;
if #d == 2 then d = {d_0,1,d_1};
A := apply(flatten entries super basis({d_1,d_2},J), s->new class var from {"f" => s});
A = {(if #A == 0 then {var-var} else A), new class var from {"f" => sub(vP,R)}};
if vP == 0 then first A else A
)
genIm = method();
genIm (DiffAlgElement,DiffAlgElement) := List => (expr,var) -> (
x := getSymbol VAR;
dx := getSymbol (if class expr === DiffAlgForm then VARD|VAR else VARA|VAR);
C := coefficientRing coefficientRing ring expr;
B := coefficientRing coefficientRing ring var;
otherVars := reverse sort toList (set(gens C) - set(apply(gens B,s->sub(s,C))));
cT := (if #otherVars > 0 then LL[otherVars] else LL);
n := numgens ring expr;
R := cT[x_0..x_(n-1)][dx_0..dx_(n-1),SkewCommutative => class expr === DiffAlgForm];
T := R[gens B];
wAux := expr#"f";
for i in gens B do wAux = sub(wAux,{sub(i,C) => 0});
if (wAux != 0) or (expr#"f" == 0) or ((degree sub(expr,T))_0 != 1) then (
print "ERROR: genIm, expression must be non-zero and homogeneous";
return {};
);
J := ideal apply(gens B, s -> coefficient(sub(s,T),sub(expr,T)));
d := degree expr;
if #d == 2 then d = {d_0,1,d_1};
A := apply(flatten entries super basis({d_1,d_2},J), s->new class expr from {"f" => s});
if #A == 0 then {expr-expr} else A
)
dist = method();
dist List := DiffAlgDistribution => L -> (
new DiffAlgDistribution from if (not uniform L or class L_0 =!= DiffAlgField) then (
print "ERROR: dist, the list must contain vector fields.";
{}
) else L
)
isInvolutive = method();
isInvolutive DiffAlgDistribution := Boolean => L -> (
T := extendRing L;
I := ideal apply(L, s->sub(s,T));
all(L,L, (i,j) -> (sub(i|j,T)%I) == 0)
)
rank DiffAlgDistribution := ZZ => L -> (
T := extendRing L;
v := flatten entries vars T;
mat := matrix for i in L list (
w := sub(i,T);
for j in v list coefficient(j,w)
);
dr := #L;
while (minors(dr,mat) == 0) and (dr > 1) do dr = dr - 1;
dr
)
-------------------
---DOCUMENTATION---
-------------------
beginDocumentation()
document {
Key => DiffAlg,
Headline => "differential algebra",
PARA {TO DiffAlg, " is a differential algebra package. It can compute the usual operations with polynomial differential forms and vector fields. Its main purpose is to associate algebraic objects to differential operators in the exterior algebra of differential forms."},
PARA {"The simplest way to load the package is with the command:"},
TT {"loadPackage \"DiffAlg\""},
PARA {"Then, one can define a linear differential 1-form, ", TT "w", ", and the radial vector field, ", TT "R", ", in 3-dimensional space as:"},
EXAMPLE lines ///
w = newForm(2,1,1,"a")
R = radial 2
ring w
ring R
///,
BR{},
PARA {"All possible options to call the package can be given with the command:"},
TT {"loadPackage (\"DiffAlg\",Configuration => {\"BaseRing\" => aRing, \"VariableName\" => varSymbol, \"DiffName\" => difSymbol, \"FieldName\" => derSymbol})"},
PARA {"where:"},
UL {{TT {"aRing"},", a ", TO Ring, ", the base ring. Default ", TT {"QQ[i]"}},{TT {"varSymbol"}, ", a ", TO String, ", the name of the affine coordinates. Default ", TT{"x"}},{TT {"difSymbol"}, ", a ", TO String, ", the symbol to denote the differential of a coordinate. Default ", TT {"d"}},{TT {"derSymbol"}, ", a ", TO String, ", the symbol to denote the partial derivative of a coordinate. Default ", TT {"a"}}},
BR{},
Caveat => PARA {"It is recommended to operate in low degrees and dimensions because of the computational time needed to handle the number of variables generated in every degree."},
SeeAlso => {newForm, newField}
}
document {
Key => DiffAlgElement,
Headline => "the class of all differential forms and vector fields",
}
document {
Key => DiffAlgForm,
Headline => "the class of all differential forms",
SeeAlso => {DiffAlgField}
}
document {
Key => DiffAlgField,
Headline => "the class of all vector fields",
SeeAlso => {DiffAlgForm}
}
document {
Key => DiffAlgDistribution,
Headline => "the class of distributions of vector fields",
}
document {
Key => {newField,(newField,ZZ,ZZ,String)},
Headline => "constructor of a vector field",
Usage => "newField(n,d,varName)",
Inputs => {
"n" => ZZ => {"number of variables minus one"},
"d" => ZZ => {"degree of the homogeneous polynomial coefficients"},
"varName" => {"name of the generic scalar coefficients"}
},
Outputs => {
DiffAlgField => {"a homogeneous vector field in (n+1)-dimensional affine space with generic scalar coefficients"}
},
PARA {"This function defines homogeneous vector fields with generic scalar coefficients. By default, the affine coordinates will be ", TT {"x_0,...,x_n"}, " and the partial derivatives are denoted as ", TT {"ax_0,...,ax_n"}, ", respectively."},
BR{},
PARA {"In this example we define a homogeneous vector field with linear polynomial coefficients in 3 variables. The scalar coefficients are chosen to be defined with the variable a. The index of the scalar coefficients will always start with 0."},
EXAMPLE lines ///
X = newField(2,2,"a")
ring X
///,
Caveat => {"The coefficient ", TT {"i"}, " is the imaginary unit."},
SeeAlso => {(newField,String),newForm}
}
document {
Key => (newField,String),
Usage => "newField(expression)",
Inputs => {
"expression" => String => {"the expression to be evaluated"}
},
Outputs => {
DiffAlgField => {"the vector field written in expression"}
},
PARA {"This function defines the particular vector field written in the given expression as elements of type ", TO DiffAlgField, ". If any parameters are founded in the given expression, they are automatically included in the ring of scalar coefficients."},
BR{},
PARA {"In the following example we define two particular vector fields, ", TT {"X"}, " and ", TT {"Y"}, ", and compute the addition ", TT {"X+Y"}, ". Notice that in the definition of ", TT {"X"}, " we are introducing a scalar parameter named ", TT {"a"}, ", also the variable ", TT {"x_2"}, " is missing from the ring of ", TT {"X"}, ". When computing ", TT {"X+Y"}, ", the rings of both vector fields are automatically merged."},
EXAMPLE lines ///
X = newField("2*a*x_0*ax_1")
ring X
Y = newField("x_0*ax_2")
ring Y
X+Y
ring (X+Y)
///,
PARA {"In this example we show that the variables will always start from the index 0 and go up to the highest index encountered in the expression defining the vector field."},
EXAMPLE lines ///
Z = newField("ax_5")
ring Z
///,
Caveat => {"By default, the affine coordinates will be ", TT {"x_0,...,x_n"}, " and the partial derivatives are denoted as", TT {" ax_0,...ax_n"}, ", respectively. The coefficient ", TT {"i"}, " is the imaginary unit."},
SeeAlso => {(newField,ZZ,ZZ,String), newForm}
}
document {
Key => {newForm,(newForm,ZZ,ZZ,ZZ,String)},
Headline => "constructor of a differential form",
Usage => "newForm(n,r,d,varName)",
Inputs => {
"n" => ZZ => {"number of variables minus one"},
"r" => ZZ => {"degree of the differential form" },
"d" => ZZ => {"degree of the polynomial coefficients of the differential form"},
"varName" => String => {"name of the generic scalar coefficients of the differential form"}
},
Outputs => {
DiffAlgForm => {"a homogeneous differential r-form in (n+1)-dimensional affine space with polynomial coefficients of degree ", TT {"d"}, ""}
},
PARA {"This function defines homogeneous differential forms with generic scalar coefficients. By default, the affine coordinates will be ", TT {"x_0,...,x_n"}, " and their exterior derivatives are denoted as ", TT {"dx_0,...,dx_n"}, ", respectively."},
BR{},
PARA {"In this example we define a homogeneous differential 1-form with linear polynomial coefficients in 3 variables. The scalar coefficients are chosen to be defined with the variable ", TT {"a"}, ". The index of the scalar coefficients will always start with 0."},
EXAMPLE lines ///
w = newForm(2,1,1,"a")
ring w
///,
Caveat => {"The coefficient ", TT {"i"}, " is the imaginary unit."},
SeeAlso => {(newForm,String), newField}
}
document {
Key => (newForm,String),
Usage => "newForm(expression)",
Inputs => {
"expression" => String => {"the expression to be evaluated"}
},
Outputs => {
DiffAlgForm => {"the differential form written in expression"}
},
PARA {"This function defines the particular differential form written in the given expression as elements of type ", TO DiffAlgForm, ". Notice that the exterior product must be written as the ordinary product of variables ", TT {"*"}, ". If any parameters are founded in the given expression, they are automatically included in the ring of scalar coefficients."},
BR{},
PARA {"In the following example we define two particular differential forms, ", TT {"w"}, " and ", TT {"z"}, ", and compute the exterior product ", TT {"w^z"}, ", see ", TO "DiffAlgForm ^ DiffAlgForm", ". In the definition of ", TT {"w"}, " we are introducing a scalar parameter named ", TT {"a"}, ". Notice that the variable ", TT {"x_2"}, " is missing from the ring of ", TT {"w"}, ". But when computing ", TT {"w^z"}, ", the rings of both vector fields are automatically merged."},
EXAMPLE lines ///
w = newForm("a * x_1 * dx_0 * dx_1")
ring w
z = newForm("x_0^2 * dx_2 - x_2^2 * dx_0")
ring z
w ^ z
ring (w+z)
///,
PARA {"In this example we show that the variables will always start from the index 0 and go up to the highest index encountered in the expression defining the differential form."},
EXAMPLE lines ///
v = newForm("dx_5")
ring v
///,
Caveat => {"By default, the affine coordinates will be ", TT {"x_0,...,x_n"}, " and the differentials are denoted as ", TT {"dx_0,...,dx_n"}, ", respectively. The coefficient ", TT {"i"}, " is the imaginary unit."},
SeeAlso => {newField, (newForm,ZZ,ZZ,ZZ,String)}
}
document {
Key => {moduliIdeal,(moduliIdeal,DiffAlgElement)},
Headline => "ideal generated by the coefficients of a differential form or vector field",
Usage => "moduliIdeal(e)",
Inputs => {
"e" => DiffAlgElement => "a differential form or vector field",
},
Outputs => {
Ideal => {"the ideal generated by the scalar coefficients of ", TT {"e"}, ""}
},
PARA {"Given a differential form or vector field, this routine returns the ideal generated by the scalar coefficients of such element."},
BR{},
PARA {"In this example we compute the equations that the scalar coefficients of a closed differential 1-form must satisfy."},
EXAMPLE lines ///
w = newForm(2,1,2,"a")
diff w
moduliIdeal(diff w)
///,
SeeAlso => {singularIdeal}
}
document {
Key => {singularIdeal,(singularIdeal,DiffAlgElement)},
Headline => "ideal generated by the polynomial coefficients of a differential form or vector field",
Usage => "singularIdeal(e)",
Inputs => {
"e" => DiffAlgElement => "a differential form or vector field"
},
Outputs => {
Ideal => {"the ideal generated by the polynomial coefficients of ", TT {"e"}, ""}
},
PARA {"Given a differential form or vector field, this routine returns the ideal generated by the polynomial coefficients of such element."},
BR{},
PARA {"In this example we compute the singular locus of a differential form ", TT {"w"}, "."},
EXAMPLE lines ///
w = random newForm(2,1,2,"a")
singularIdeal(w)
///,
PARA {"This routine is useful to obtain the ", TO RingElement, " representing a 0-form"},
EXAMPLE lines ///
w = random newForm(2,1,2,"a");
r = radial 2;
F = r_w
degree F
(gens singularIdeal F)_0_0
///,
SeeAlso => {moduliIdeal}
}
document {
Key => {logarithmicForm, (logarithmicForm,ZZ,List,String)},
Headline => "creates a logarithmic form",
Usage => "logarithmicForm(n,L,varName)",
Inputs => {
"n" => ZZ => {"number of variables minus one"},
"L" => List => {"list of degrees"},
"varName" => String => {"name of the coefficients"},
Projective => Boolean => {"whether to create a logarithmic form that descends to projective space"}
},
Outputs => {
DiffAlgForm => {"a generic logarithmic form"}
},
PARA {"A logarithmic form of type ", TT {"(d_0,...,d_n)"}, " is a differential 1-form ", TT {"w"}, " that can be written as ", TT {"w=(prod f_i)sum df_i/f_i"}, ", where ", TT {"f_i"}, " is a polynomial of degree ", TT {"d_i"}, ". This routine creates such a logarithmic form using homogeneous polynomials. When using a list ", TT {"L"}, " of length two, the differential form is called rational."},
BR{},
PARA {"In this example we generate a random logarithmic form in affine 3-dimensional space with degrees ", TT {"(1,1,2)"}, "."},
EXAMPLE lines ///
random logarithmicForm(2,{1,1,2},"a")
///,
PARA {"In this example we generate a generic rational form in the projective plane of type ", TT {"(1,1)"}, "."},
EXAMPLE lines ///
logarithmicForm(2,{1,1},"a",Projective => true)
///,
PARA {"In the following example, we produce a logarithmic form that descends to projective space."},
EXAMPLE lines ///
l = random logarithmicForm(2,{1,1},"a",Projective => true)
(radial 2)_l
///
}
document {
Key => [logarithmicForm, Projective],
Headline => "a boolean option to produce a projective logarithmic form",
Usage => "logarithmicForm(..., Projective => b)",
Inputs => {
"b" => Boolean => "if true, it return a generic projective logarithmic form"
},
EXAMPLE lines ///
l = logarithmicForm(2,{1,1},"a",Projective => true)
(radial 2)_l
///
}
document {
Key => {(random,DiffAlgElement,Ring),(random,DiffAlgElement)},
Headline => "replaces the variables of the coefficient ring of a differential form or a vector field with random values",
Usage => "random(e,R)",
Inputs => {
"e" => DiffAlgElement => "a differential form or vector field with generic coefficients",
"R" => Ring => {"the ring where the random values are taken from. Default value is ",ofClass ZZ},
},
Outputs => {
DiffAlgElement => {"the differential form or vector field ", TT {"e"}, " whose variables of the coefficient ring were evaluated at random values"}
},
EXAMPLE lines ///
random newForm(2,2,1,"a")
random(newField(2,2,"a"),QQ)
///,
PARA {"Options ", TT "Density", " and ", TT "Height", " are implemented"},
EXAMPLE lines ///
random(newForm(2,2,1,"a"),Density => .2)
random(newForm(2,2,1,"a"),Height => 100)
///,
Caveat => {"This routine depends on the Macaulay2 method ", TO{random}, " which is not implemented in some rings. The option ", TO{[random,Density]}, " applied to a non-generic form (such us 2a logarithmic form) may return a form equal to 0"}
}
document {
Key => {dist,(dist,List)},
Headline => "produces a DiffAlgDistribution from a list",
Usage => "dist(L)",
Inputs => {
"L" => List => {"list of vector fields, see ", TO DiffAlgField},
},
Outputs => {
DiffAlgDistribution => {"generated by the vector fields in the given list."}
},
PARA {"This command checks that all the elements in the list are vector fields."},
EXAMPLE lines ///
X = newField("3*x_0*ax_0+x_1*ax_1")
Y = radial 3
dist {X,Y}
///,
SeeAlso => {newField, radial, (rank,DiffAlgDistribution), isInvolutive}
}
document {
Key => {isInvolutive,(isInvolutive,DiffAlgDistribution)},
Headline => "tests if a distribution is involutive",
Usage => "isInvolutive(L)",
Inputs => {
"L" => DiffAlgDistribution => {"as given by the output of ", TO dist},
},
Outputs => {
Boolean => {"true if the distribution L is involutive"}
},
PARA {"If ", TT {"L"}, " is a list of vector fields, this routine tests the involutivity of ", TT {"L"}, "."},
BR{},
PARA {"In this example we test the involutivity of two vector fields."},
EXAMPLE lines ///
X = newField("3*x_0*ax_0+x_1*ax_1")
Y = radial 3
isInvolutive dist {X,Y}
///,
PARA {"In this example we compute a basis of the annihilator of a random projective logarithmic differential 1-form. Then we verify that it is an involutive distribution."},
EXAMPLE lines ///
w = random logarithmicForm(2,{1,2},"a",Projective => true)
X = newField(2,2,"a")
D = genKer(X_w,X);
#D
isInvolutive dist D
///,
SeeAlso => {newField,radial,(rank,DiffAlgDistribution)}
}
document {
Key => {(isHomogeneous,DiffAlgElement)},
Headline => "tests if a form (or field) is homogeneous",
Usage => "isHomogeneous(e)",
Inputs => {
"e" => DiffAlgElement => {"representing a form or a field"},
},
Outputs => {
Boolean => {"true if the form (or field) is homogeneous"}
},
PARA {"In this example we test if a vector field is homogeneous,"},
EXAMPLE lines ///
X = newField("3*ax_0+x_1*ax_1")
isHomogeneous X
///,
PARA {"In this example we test if a projective logarithmic differential 1-form is homogeneous,"},
EXAMPLE lines ///
w = random logarithmicForm(2,{1,2},"a",Projective => true)
isHomogeneous w
///,
SeeAlso => {homogenize}
}
document {
Key => (rank,DiffAlgDistribution),
Headline => "rank of the given distribution",
Usage => "rank(L)",
Inputs => {
"L" => DiffAlgDistribution => {"list of vector fields, see ", TO dist}
},
Outputs => {
ZZ => {"the rank of the distribution generated by L"}
},
PARA {"This routine returns the rank of the distribution ", TT "L","."},
BR{},
PARA {"In this example we generate two random vector fields in three variables with polynomial coefficients of degree 2. Then we compute the rank of some distributions generated with them."},
EXAMPLE lines ///
X = random newField(2,2,"a")
Y = random newField(2,2,"a")
rank dist {X,Y}
rank dist {X,Y,X+Y,X-Y}
rank dist {X,Y,X|Y}
///,
SeeAlso => {newField,radial,isInvolutive}
}
document {
Key => {linearComb,(linearComb,List,String)},
Headline => "generic linear combination of elements",
Usage => "linearComb(L,varName)",
Inputs => {
"L" => List => {"list of vector fields or differential forms, see ", TO DiffAlgField, " or ", TO DiffAlgForm},
"varName" => String => {"name of the generic coefficient"},
},
Outputs => {
DiffAlgElement => {"generic linear combination of the list ", TT {"L"}, ""}
},
PARA {"This routine produce a generic linear combination of the elements in ", TT {"L"}, ". It can be used together with ", TO genKer, " or ", TO genIm, " to solve a system of homogeneous linear equations."},
BR{},
PARA {"In this example we compute a generic and a particular linear combination of two particular differential 2-forms."},
EXAMPLE lines ///
w = random newForm(2,1,2,"a")
h = random newForm(2,1,2,"a")
linearComb({w,h},"a")
random oo
///,
PARA {"In this example we compute a generic differential 1-form that descends to the projective plane. Then, we impose another linear condition."},
EXAMPLE lines ///
w = newForm(2,1,2,"a");
h = random newForm(2,2,1,"a");
L = genKer( (radial 2) _ w,w)
wr = linearComb(L,"a")
genKer(h ^ wr, wr)
///,
SeeAlso => {newField,newForm,random,genKer,genIm}
}
document {
Key => {radial,(radial,ZZ)},
Headline => "defines the radial vector field",
Usage => "radial n",
Inputs => {
"n" => ZZ => "number of variables minus one"
},
Outputs => {
DiffAlgField => {"the radial vector field in the n-dimensional projective space"}
},
PARA {"This function defines the radial field vector field in (n+1)-variables."},
EXAMPLE lines ///
radial 2
///
}
document {
Key => {genKer,(genKer,DiffAlgElement,DiffAlgElement)},
Headline => "basis of the kernel of a linear expression",
Usage => "gerKer(expr,var)",
Inputs => {
"expr" => DiffAlgElement => {"an expression linear in the variable ", TT "var"},
"var" => DiffAlgElement => {"this is the variable of the linear expression, it must have free and linear scalar coefficients"}
},
Outputs => {
List => {"basis of the kernel of the linear expression"}
},
SeeAlso => {genIm},
PARA {"This routine returns a basis of the kernel of ", TT "expr",", an homogeneous expression linear in ", TT "var","."},
BR{},
PARA {"In the case of a non-homogeneous linear expression, this routine returns a pair having in the first coordinate a basis of the kernel of the associated homogeneous linear expression and in the second coordinate a particular solution."},
BR{},
PARA {"In the first example, we compute a basis of projective differential 1-forms in projective 3-space with polynomial coefficients of degree 1. Then, we define a random rational differential form of type ", TT {"(1,1)"}, " and compute its tangent directions using the generic projective form defined before."},
BR{},
PARA {"In the second example, we compute a particular solution of a non-homogeneous linear expression."},
EXAMPLE lines ///
h = newForm(4,1,1,"a")
R = radial 4
T = genKer(R _ h,h)
H = linearComb(T,"a")
w = random logarithmicForm(4,{1,1},"a", Projective => true)
genKer(w ^ (diff H) + (diff w) ^ H,H)
///,
EXAMPLE lines ///
w1 = random newForm(4,1,1,"a");
w2 = random newForm(4,1,1,"a");
w3 = w1 ^ w2;
h = newForm(4,1,1,"a");
last genKer(w1 ^ h - w3,h)
///
}
document {
Key => {genIm,(genIm, DiffAlgElement,DiffAlgElement)},
Headline => "a basis of the image of a linear expression",
Usage => "genIm(expr,var)",
Inputs => {
"expr" => DiffAlgElement => {"an expression linear in the variable ", TT "var"},
"var" => DiffAlgElement => {"this is the variable of the linear expression, it must have free and linear scalar coefficients"}
},
Outputs => {
List => {"a basis of the image of the linear expression"}
},
SeeAlso => {genKer},
PARA {"This routine returns a basis of the image of ", TT "expr",", an homogeneous expression linear in ", TT "var", "."},
BR{},
PARA {"In this example we compute a basis of the image of the derivative of a projective differential 1-forms."},
EXAMPLE lines ///
h = newForm(2,1,2,"a")
R = radial 2
H = linearComb(genKer(R _ h, h),"a")
genIm(diff H,H)
///,
PARA {"It is possible to get a linearly independent set of elements using this routine:"},
EXAMPLE lines ///
w1=random newForm(2,1,2,"a");
w2=random newForm(2,1,2,"a");
w3=w1+w2;
u=linearComb({w1,w2,w3},"a");
genIm(u,u)
#oo
///
}
document {
Key => (symbol +, DiffAlgElement, DiffAlgElement),
Headline => "addition",
Usage => "w + h",
Inputs => {
"w" => DiffAlgElement => "a differential form or vector field",
"h" => DiffAlgElement => "a differential form or vector field"
},
Outputs => {
DiffAlgElement => {"the addition of ", TT {"w"}, " and ", TT {"h"}}
},
EXAMPLE lines ///
h = radial 2
w = random newField(3,1,"a")
w + h
///
}
document {
Key => (symbol -, DiffAlgElement, DiffAlgElement),
Headline => "subtraction",
Usage => "w - h",
Inputs => {
"w" => DiffAlgElement => "a differential form or vector field",
"h" => DiffAlgElement => "a differential form or vector field",
},
Outputs => {
DiffAlgElement => {"the subtraction of ", TT {"w"}, " and ", TT {"h"}}
},
EXAMPLE lines ///
w = newForm(2,1,1,"a")
h = newForm(3,2,1,"b")
w - h
///
}
document {
Key => {(symbol ^, DiffAlgForm, DiffAlgForm),(symbol *, DiffAlgForm, DiffAlgForm)},
Headline => "exterior product",
Usage => "w ^ h",
Inputs => {
"w" => DiffAlgForm => "a differential form",
"h" => DiffAlgForm => "a differential form"
},
Outputs => {
DiffAlgForm => {"the exterior product of ", TT {"w"}, " and ", TT {"h"}}
},
PARA {"This function computes the exterior product of two differential forms."},
EXAMPLE lines ///
w = newForm(2,1,2,"a")
h = newForm(2,1,1,"b")
w ^ h
///
}
document {
Key => (symbol *, List, DiffAlgForm),
Headline => "pull-back of a differential form by a rational map",
Usage => "L * w",
Inputs => {
"L" => List => {"the rational map represented by a list of polynomials as 0-forms, see ", TO DiffAlgForm},
"w" => DiffAlgForm => "a differential form"
},
Outputs => {
DiffAlgForm => {"the pull-back of ", TT {"w"}, " via ", TT {"L"}}
},
PARA {"Given a list of polynomials ", TT {"F = (F_0,...,F_n)"}, " and a differential form ", TT {"w"}, " on n+1 variables, the pull-back ", TT {"F*w"}, " is defined as the composition ", TT {"w(F)"}, "."},
BR{},
PARA {"In this example we compute the pull-back of the 1-differential form ", TT {"w"}, " with respect to the mapping ", TT {"F = (F_0,F_1,F_2)"}, "."},
EXAMPLE lines ///
F_0 = random newForm(1,0,1,"a");
F_1 = random newForm(1,0,2,"a");
F_2 = random newForm(1,0,1,"a");
w = random newForm(2,2,1,"a")
{F_0,F_1,F_2}*w
///
}
document {
Key => {(symbol _, DiffAlgField, DiffAlgForm),(symbol _, DiffAlgForm, DiffAlgField)},
Headline => "contraction of a differential form with respect to a vector field",
Usage => "X _ w",
Inputs => {
"X" => DiffAlgField => "a vector field",
"w" => DiffAlgForm => "a differential form"
},
Outputs => {
DiffAlgForm => {"the contraction of ", TT {"w"}, " with respect to ", TT {"X"}}
},
PARA {"Given a vector field ", TT {"X"}, " and a differential form ", TT {"w"}, ", this function returns the contraction of ", TT {"w"}, " with respect to ", TT {"X"}, ". The function can be called as ", TT {"X _ w"}, " or as ", TT {"w _ X"}, "."},
BR{},
PARA {"In this example we compute the contraction of a simple differential form and a vector field."},
EXAMPLE lines ///
w = newForm("dx_0 * dx_1")
Y = newField("ax_0")
Y _ w
///
}
document {
Key => (symbol |, DiffAlgField, DiffAlgField),
Headline => "Lie bracket",
Usage => "X | Y",
Inputs => {
"X" => DiffAlgField => "a vector field",
"Y" => DiffAlgField => "a vector field"
},
Outputs => {
DiffAlgField => {"the Lie bracket of ", TT {"X"}, " and ", TT {"Y"}}
},
PARA {"This function computes the Lie bracket of two vector fields."},
EXAMPLE lines ///
X = random newField(2,1,"a")
Y = random newField(2,1,"b")
X | Y
///,
SeeAlso => {isInvolutive}
}
document {
Key => {(symbol *, DiffAlgElement, RingElement),
(symbol *, RingElement, DiffAlgElement),
(symbol *, DiffAlgElement, ZZ),
(symbol *, ZZ, DiffAlgElement),
(symbol *, DiffAlgElement, QQ),
(symbol *, QQ, DiffAlgElement)},
Headline => "scalar multiplication",
Usage => "e * n",
Inputs => {
"e" => DiffAlgElement => "a differential form or a vector field",
"n" => RingElement => "scalar"
},
Outputs => {
DiffAlgElement => {"the product of ", TT {"e"}, " and ", TT {"n"}}
}
}
document {
Key => {(symbol /, DiffAlgElement, RingElement),
(symbol /, DiffAlgElement, ZZ),
(symbol /, DiffAlgElement, QQ)},
Headline => "scalar division",
Usage => "e / n",
Inputs => {
"e" => DiffAlgElement => "a differential form or a vector field",
"n" => RingElement => "scalar"
},
Outputs => {
DiffAlgElement => {"the quotient of ", TT {"e"}, " by ", TT {"n"}}
}
}
document {
Key => (symbol -, DiffAlgElement),
Headline => "negation of a differential form or vector field",
Usage => "- e",
Inputs => {
"e" => DiffAlgElement => "a differential form or a vector field"
},
Outputs => {
DiffAlgElement => {"the negation of ", TT {"e"}}
}
}
document {
Key => {(symbol |, DiffAlgElement, String), (symbol |, String, DiffAlgElement)},
Headline => "concatenate a string with a differential form or vector field",
Usage => "e | text",
Inputs => {
"e" => DiffAlgElement => "a differential form or a vector field",
"text" => String => "a string to be concatenated"
},
Outputs => {
String => {"concatenation of ", TT{"text"}, " with the string representation of ", TT {"e"}}
},
EXAMPLE lines ///
w=newForm(2,1,2,"a")
newForm ("b*4-"|w|"+4*dx_3")
///
}
document {
Key => (homogenize, DiffAlgElement),
Headline => "homogenize a differential form or vector field",
Usage => "homogenize e",
Inputs => {
"e" => DiffAlgElement => "a form or a vector field",
},
Outputs => {
DiffAlgElement => {"the homogenization of ", TT {"e"}, " with respect to a new variable. The resulting form or vector field is homogeneous."}
},
SeeAlso => {projectivize, isHomogeneous},
EXAMPLE lines ///
w = newForm("2*x_0*dx_0+x_1^2*dx_1")
homogenize w
///,
EXAMPLE lines ///
homogenize newField ("ax_0+x_1*ax_2+a*ax_1")
///,
Caveat => "The homogenization process of a form adds one variable to the given element."
}
document {
Key => {projectivize,(projectivize, DiffAlgElement)},
Headline => "projectivize a differential form or vector field",
Usage => "projectivize e",
Inputs => {
"e" => DiffAlgElement => "a form or a vector field",
},
Outputs => {
DiffAlgElement => {"the projectivization of ", TT {"e"}, " with respect to a new variable. The resulting form or vector field descends to projective space."}
},
PARA {"This returns the unique differential form that extends the given one from affine space to projective space."},
SeeAlso => {homogenize, isHomogeneous},
EXAMPLE lines ///
w = newForm("2*x_0*dx_0+x_1^2*dx_1")
r = radial 2
projectivize w
r_oo
///,
EXAMPLE lines ///
projectivize newField ("ax_0+x_1*ax_2+a*ax_1")
///,
Caveat => "The projectivization process of a form increases the polynomial degree by one if the original element did not descend to projective space."
}
document {
Key => (diff, DiffAlgForm),
Headline => "exterior differential",
Usage => "diff w",
Inputs => {
"w" => DiffAlgForm => "a form",
},
Outputs => {
DiffAlgForm => {"the exterior differential of ", TT {"w"}}
},
PARA {"This function computes the exterior differential of a given differential form."},
EXAMPLE lines ///
w = newForm(2,1,2,"a")
diff w
///
}
document {
Key => (degree, DiffAlgElement),
Headline => "degree of a differential form or a vector field",
Usage => "degree e",
Inputs => {
"e" => DiffAlgElement => "a differential form or vector field",
},
Outputs => {
List => {"If ", TT {"e"}, " is a vector field it returns ", TT {"{n,d}"}, "; if ", TT {"e"}," is a differential form it returns ", TT {"{n,r,d}"}, "."},
},
PARA {"This function returns the degree of a homogeneous differential form or vector field."},
UL {
{TT "n", ", ", ofClass ZZ, ", is the number of variables minus one"},
{TT "r", ", ", ofClass ZZ, ", is the degree of the differential form or empty if ", TT "e", " is a vector field"},
{TT "d", ", ", ofClass ZZ, ", is the degree of the polynomial coefficients"}
},
BR{},
PARA {"In the following example we compute the degree of a differential form and a vector field."},
EXAMPLE lines ///
w = newForm(2,1,3,"a")
degree(w)
X = newField(2,2,"b")
degree X
///,
Caveat => PARA {"If the ", TO DiffAlgElement, " is non-homogeneous the function returns the highest degrees ", TT "{n,r,d}", " of each homogeneous component in the given expression. For example, if the degree of ", TT "w", " is ", TT "{2,1,3}", ", then ", TT "degree(w + (diff w))", " returns, ", TT "{2,2,3}"}
}
document {
Key => (ring,DiffAlgElement),
Headline => "ring of the differential form or vector field",
Usage => "ring e",
Inputs => {
"e" => DiffAlgElement => "a differential form or vector field",
},
Outputs => {
Ring => {"the ring of ", TT {"e"}}
},
PARA {"This function returns the ring where the given differential form of vector field is defined."},
EXAMPLE lines ///
w = newForm(2,1,2,"a")
ring w
///
}
undocumented {(net,DiffAlgElement)}
undocumented { (toString,DiffAlgElement)}
document {
Key => (sub,DiffAlgElement,Ring),
Headline => "gets the RingElement of a differential form or vector field in a ring",
Usage => "sub(e,R)",
Inputs => {
"e" => DiffAlgElement => "a differential form or vector field",
"R" => Ring => "the target ring"
},
Outputs => {
RingElement => {"an element of ", TT {"R"}, " representing ", TT {"e"}}
},
PARA {"By its nature, the package ", TO DiffAlg, " is constantly changing the rings where its differential forms and vector fields are defined. This function is useful to get information of ", TO DiffAlg, " out to some common polynomial rings and work with the rest of Macaulay2 packages."},
BR{},
PARA {"In this example we get the singular locus of a logarithmic form and compute its Hilbert polynomial."},
EXAMPLE lines ///
w = random logarithmicForm(2,{1,1},"a",Projective => true)
I = singularIdeal w
S = QQ[gens ring I]
hilbertPolynomial (sub(I,S))
///
}
----------
---TEST---
----------
TEST ///
w = newForm(3,1,2,"a")
e = diff diff w
assert(e#"f" == 0)
///
TEST ///
X = newField(2,2,"a")
Y = newField(2,1,"b")
Z = newField(2,2,"c")
e = (X|(Y|Z)) + (Z|(X|Y)) + (Y|(Z|X))
assert(e#"f" == 0)
///
TEST ///
w = newForm(3,1,2,"a")
R = radial 3
assert((R_(diff w) + diff(R _ w) - 3*w)#"f" == 0)
///
TEST ///
w = newForm(3,1,2,"a")
assert( (w^w)#"f" == 0)
///
TEST ///
w = newForm(3,1,2,"a")
h = newForm(3,1,3,"b")
assert((w^h + h^w)#"f" == 0)
///
TEST ///
X = newField(3,0,"a")
Y = newField(3,0,"b")
assert(isInvolutive dist {X,Y})
///
TEST ///
w = logarithmicForm(3,{1,2,1}, "a")
assert( (w ^ (diff w))#"f" == 0)
///
TEST ///
w = random newForm(3,2,2,"a")
h = newForm(3,1,1,"b")
L = genKer(w^(diff h) + h ^ (diff w), h)
assert( (w^(diff (L_0)) + (L_0) ^ (diff w))#"f" == 0)
///
TEST ///
w = random newForm(3,2,2,"a")
h = newForm(3,1,1,"b")
L = genKer(w^(diff h) + h ^ (diff w), h)
M = genIm(w^(diff h) + h ^ (diff w), h)
assert(#L + #M == 16)
///
TEST ///
w = newForm "(576*x_0^3+1656*x_0^2*x_1+1134*x_0*x_1^2+1944*x_0^2*x_2+3456*x_0*x_1*x_2+972*x_1^2*x_2+2610*x_0*x_2^2+2268*x_1*x_2^2+1296*x_2^3)*dx_0+(1080*x_0^3+3042*x_0^2*x_1+2016*x_0*x_1^2+3582*x_0^2*x_2+6228*x_0*x_1*x_2+1728*x_1^2*x_2+4752*x_0*x_2^2+4032*x_1*x_2^2+2304*x_2^3)*dx_1+(1080*x_0^3+3042*x_0^2*x_1+2016*x_0*x_1^2+3582*x_0^2*x_2+6228*x_0*x_1*x_2+1728*x_1^2*x_2+4752*x_0*x_2^2+4032*x_1*x_2^2+2304*x_2^3)*dx_2"
h = newForm(2,1,3,"b")
K = genKer(w^(diff h) + h ^ (diff w), h)
assert(#K == 12)
///
TEST ///
w = (radial 2)_(newForm (2,2,1,"a"))
F = newForm(3,0,1,"b")
G = newForm(3,0,1,"c")
H = newForm(3,0,1,"d")
h = {F,G,H}*w
assert((h^(diff h))#"f" == 0)
///
TEST ///
w = diff newForm(2,1,2,"a")
F = newForm(4,0,1,"b")
G = newForm(4,0,1,"c")
H = newForm(4,0,1,"d")
h = diff ({F,G,H} * w)
assert(h#"f" == 0)
///
TEST ///
f = random newForm(2,2,1,"a")
h = newForm(2,1,2,"b")
L = genIm(f*h,h)
I = sum apply(L,singularIdeal)
J = singularIdeal(f^(random h));
assert(isSubset(sub(J,ring I),I))
///
TEST ///
r = radial 2
h = newForm(2,1,2,"a")
w = random newForm(2,1,1,"a")
h1 = linearComb (genKer(r_h,h), "a")
L1 = genKer((diff w)^h1,h1)
h2 = linearComb (genKer((diff w)^h,h), "a")
L2 = genKer(r_h2,h2)
m1 = matrix{for i in L1 list transpose gens singularIdeal i}
m2 = matrix{for i in L2 list transpose gens singularIdeal i}
m2 = sub(m2,ring m1)
assert (image m1 == image m2)
///
TEST ///
X = newField("x_0^2*ax_0+ x_1^2*ax_1+ x_2^2*ax_2+ x_3^2*ax_3");
Y = newField("x_5*ax_0+ x_4*ax_1+ x_3*ax_2+ x_2*ax_3+ x_1*ax_4+ x_0*ax_5");
D_0 = {X,Y};
for b in 1..3 do (for a in D_(b-1) do (D_b=join(D_(b-1),{a|Y,a|X})));
assert ({rank dist D_0, rank dist D_1, rank dist D_2, rank dist D_3} == {2, 3, 5, 6})
///
end
Jou = newForm "dx_0*(2*x_0*x_3^2*x_6^2+2*x_0*x_3^2*x_7^2+2*x_0*x_3^2*x_8^2+2*x_0*x_4^2*x_6^2+2*x_0*x_4^2*x_7^2+2*x_0*x_4^2*x_8^2+2*x_0*x_5^2*x_6^2+2*x_0*x_5^2*x_7^2+2*x_0*x_5^2*x_8^2)+dx_1*(2*x_1*x_3^2*x_6^2+2*x_1*x_3^2*x_7^2+2*x_1*x_3^2*x_8^2+2*x_1*x_4^2*x_6^2+2*x_1*x_4^2*x_7^2+2*x_1*x_4^2*x_8^2+2*x_1*x_5^2*x_6^2+2*x_1*x_5^2*x_7^2+2*x_1*x_5^2*x_8^2)+dx_2*(2*x_2*x_3^2*x_6^2+2*x_2*x_3^2*x_7^2+2*x_2*x_3^2*x_8^2+2*x_2*x_4^2*x_6^2+2*x_2*x_4^2*x_7^2+2*x_2*x_4^2*x_8^2+2*x_2*x_5^2*x_6^2+2*x_2*x_5^2*x_7^2+2*x_2*x_5^2*x_8^2)+dx_3*(2*i*x_0^2*x_3*x_6^2+2*i*x_0^2*x_3*x_7^2+2*i*x_0^2*x_3*x_8^2+2*i*x_1^2*x_3*x_6^2+2*i*x_1^2*x_3*x_7^2+2*i*x_1^2*x_3*x_8^2+2*i*x_2^2*x_3*x_6^2+2*i*x_2^2*x_3*x_7^2+2*i*x_2^2*x_3*x_8^2)+dx_4*(2*i*x_0^2*x_4*x_6^2+2*i*x_0^2*x_4*x_7^2+2*i*x_0^2*x_4*x_8^2+2*i*x_1^2*x_4*x_6^2+2*i*x_1^2*x_4*x_7^2+2*i*x_1^2*x_4*x_8^2+2*i*x_2^2*x_4*x_6^2+2*i*x_2^2*x_4*x_7^2+2*i*x_2^2*x_4*x_8^2)+dx_5*(2*i*x_0^2*x_5*x_6^2+2*i*x_0^2*x_5*x_7^2+2*i*x_0^2*x_5*x_8^2+2*i*x_1^2*x_5*x_6^2+2*i*x_1^2*x_5*x_7^2+2*i*x_1^2*x_5*x_8^2+2*i*x_2^2*x_5*x_6^2+2*i*x_2^2*x_5*x_7^2+2*i*x_2^2*x_5*x_8^2)+dx_6*(-(1+i)*x_0^2*x_3^2*x_6-(1+i)*x_0^2*x_4^2*x_6-(1+i)*x_0^2*x_5^2*x_6-(1+i)*x_1^2*x_3^2*x_6-(1+i)*x_1^2*x_4^2*x_6-(1+i)*x_1^2*x_5^2*x_6-(1+i)*x_2^2*x_3^2*x_6-(1+i)*x_2^2*x_4^2*x_6-(1+i)*x_2^2*x_5^2*x_6)+dx_7*(-(1+i)*x_0^2*x_3^2*x_7-(1+i)*x_0^2*x_4^2*x_7-(1+i)*x_0^2*x_5^2*x_7-(1+i)*x_1^2*x_3^2*x_7-(1+i)*x_1^2*x_4^2*x_7-(1+i)*x_1^2*x_5^2*x_7-(1+i)*x_2^2*x_3^2*x_7-(1+i)*x_2^2*x_4^2*x_7-(1+i)*x_2^2*x_5^2*x_7)+dx_8*(-(1+i)*x_0^2*x_3^2*x_8-(1+i)*x_0^2*x_4^2*x_8-(1+i)*x_0^2*x_5^2*x_8-(1+i)*x_1^2*x_3^2*x_8-(1+i)*x_1^2*x_4^2*x_8-(1+i)*x_1^2*x_5^2*x_8-(1+i)*x_2^2*x_3^2*x_8-(1+i)*x_2^2*x_4^2*x_8-(1+i)*x_2^2*x_5^2*x_8)"
|