File: DeRham.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (374 lines) | stat: -rw-r--r-- 13,349 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
-- Copyright 1999-2002 by Anton Leykin and Harrison Tsai

--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
-- Computes deRham cohomology of a smooth affine variety. For more options on localCohom strategy use ICcohom instead.
-- Special algorithm for the de Rham cohomology of K^n - V(f) using the algorithm of Oaku-Takayama.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------



deRham = method( Options => {Strategy => Schreyer})
deRham Ideal := options -> I -> (
    R:= ring I;
    if class R =!= PolynomialRing
    then error "expected an ideal in a polynomial ring";
    primes := minimalPrimes I;
    if #primes > 1 then error "The variety defined by the ideal must be irreducible";
    P := primes#0;
    S := ideal (singularLocus P);
    if R != S then error "expected an ideal defining a smooth affine variety";
    n:= numgens R;
    d:= dim I;
    c:= n-d;
    H:=localCohom(c,I);
    M:=minimalPresentation H;
    integrateTable := Dintegration(M, apply(n,i->1), options);
    new HashTable from (for i from 0 to d list i=>integrateTable#(d-i))
)

deRham (ZZ, Ideal) := options -> (k, I) -> (    
    R:= ring I;
    if class R =!= PolynomialRing
    then error "expected an ideal in a polynomial ring";
    primes := minimalPrimes I;
    if #primes > 1 then error "The variety defined by the ideal must be irreducible";
    P := primes#0;
    S := ideal (singularLocus P);
    if R != S then error "expected an ideal defining a smooth affine variety";
    n:= numgens R;
    d:= dim I;
    if k>d then 0
    else (
    	c:= n-d;
    	H:=localCohom(c,I);
    	M:=minimalPresentation H;
    	Dintegration(d-k, M, apply(n,i->1),options)
	)
)



deRham RingElement := options -> f -> (
     pInfo(1, "ENTERING deRham ...");     
     R := ring f;
     if class R =!= PolynomialRing
     then error "expected element of a polynomial ring";
     if R.monoid.Options.WeylAlgebra =!= {}
     then error "expected element of a commutative polynomial ring";
     
     outputList := {};
     n := numgens R;
     x := symbol x;
     D := symbol D;
     WA := (coefficientRing R)[x_1 .. x_n, D_1 .. D_n,
	  WeylAlgebra => apply(toList(1..n), i -> x_i => D_i)];
     RtoWA := map(WA, R, (vars WA)_(toList(0..n-1)));
     M := cokernel matrix{{D_1 .. D_n}};
     locMod := Dlocalize(M, RtoWA f, Strategy => Oaku);
     w := toList(n:1);
     integrateTable := Dintegration(locMod, w, options);
     homologyTable := hashTable apply(toList(0..n),
	  i -> (-i+n) => integrateTable#i);
     homologyTable
     )

deRham (ZZ, RingElement) := options -> (k, f) -> (
     pInfo(1, "ENTERING deRham ...");     
     R := ring f;
     if class R =!= PolynomialRing
     then error "expected element of a polynomial ring";
     if R.monoid.Options.WeylAlgebra =!= {}
     then error "expected element of a commutative polynomial ring";
     
     outputList := {};
     n := numgens R;
     x := symbol x;
     D := symbol D;
     WA := (coefficientRing R)[x_1 .. x_n, D_1 .. D_n,
	  WeylAlgebra => apply(toList(1..n), i -> x_i => D_i)];
     RtoWA := map(WA, R, (vars WA)_(toList(0..n-1)));
     M := cokernel matrix{{D_1 .. D_n}};
     locMod := Dlocalize(M, RtoWA f, Strategy => Oaku);
     w := toList(n:1);
     homologyModule := Dintegration(n-k, locMod, w, options);
     homologyModule
     )

deRhamAll = method( Options => {Strategy => Schreyer})
deRhamAll RingElement := options -> f -> (
     pInfo(1, "ENTERING deRhamAll ...");     
     R := ring f;
    if class R =!= PolynomialRing
     then error "expected element of a polynomial ring";
     if R.monoid.Options.WeylAlgebra =!= {}
     then error "expected element of a commutative polynomial ring";
     
     n := numgens R;
     x := symbol x;
     D := symbol D;
     WA := (coefficientRing R)[x_1 .. x_n, D_1 .. D_n,
	  WeylAlgebra => apply(toList(1..n), i -> x_i => D_i)];
     RtoWA := map(WA, R, (vars WA)_(toList(0..n-1)));
     M := cokernel matrix{{D_1 .. D_n}};
     WAf := RtoWA f;
     LocMap := DlocalizeMap(M, WAf, Strategy => Oaku);
     Mf := target LocMap;
     w := toList(n:1);
     
     outputRequest := {GenCycles, HomologyModules,
	  VResolution, BFunction, Explicit};
     MF := cokernel Fourier relations Mf; 
     outputTable := computeRestriction (MF, w, -1, n+1,
	  outputRequest, options);
     outputList := {BFunction => outputTable#BFunction,
	  LocalizeMap => LocMap};
     if outputTable#VResolution =!= null then 
     outputList = append(outputList, 
	  VResolution => FourierInverse outputTable#VResolution)
     else outputList = append(outputList, VResolution => null);
     
     outputList = outputList | {
	  PreCycles => hashTable apply(toList(0..n), 
	       i -> (n-i => FourierInverse outputTable#GenCycles#i)),
	  CohomologyGroups => hashTable apply(toList(0..n), 
	       i -> (n-i => outputTable#HomologyModules#i)) };
     
     intTable := hashTable outputList;
     
     --P := DintegrationDeRham(Mf, w, Strategy => options.Strategy,
     --     Info => options.Info, ExplicitHomology => options.ExplicitHomology);

     if intTable#VResolution =!= null then (     
     	  pInfo(1, "Making the Koszul complex... ");
     	  createDpairs WA;
     	  Omega := Dres ideal WA.dpairVars#1;
     	  pInfo(1, "Transferring cohomology classes to deRham complex... ");
     	  dbl := Omega**(intTable#VResolution);
     	  transfers := {};
     	  i := 0;
     	  while i <= n do (
	       pull := intTable#PreCycles#i;
	       j := 0;
	       pInfo(2, "\t Degree " | i | "...");
	       tInfo := toString first timing (
	       	    while j < n-i do (
	            	 vertMap := zeroize dbl#(n-i-1)^[(j,-j+n-i-1)]*
	            	 (dbl.dd#(n-i))*(dbl#(n-i)_[(j,-j+n-i)]);
	            	 push := vertMap*pull;
	            	 horMap := zeroize dbl#(n-i-1)^[(j,-j+n-i-1)]*
	            	 (dbl.dd#(n-i))*(dbl#(n-i)_[(j+1,-j+n-i-1)]);
	            	 if ((Dtransposition push) % (Dtransposition horMap) != 0)
	            	 then error "syzygy should be produced but wasn't!";
	            	 pull = (Dtransposition push) // (Dtransposition horMap);
	            	 pull = Dtransposition pull;
	            	 j = j+1;
	            	 );
	       	    );
	       pInfo(2, "\t\t\t time = " | tInfo | " seconds" );
	       transfers = append(transfers, i => pull);
	       i = i+1;
	       );
     	  outputList = outputList | {TransferCycles => 
	       hashTable transfers, OmegaRes => Omega};
     	  );
     hashTable outputList
     )

-- iAllt is by Nobuki Takayama, 2007.
-- iAllt(I) computes integration cohomology groups of D/I with transfer's
-- logCohomology(I) computes DR(tilde M).
-- 
-- Example:
-- M2   
-- load "D-modules.m2"
-- load "trans.m2"
-- use S; f=x*y*(x-y);  logCohomology(f);

protect Input						    -- not exported?

iAllt = method( Options => {Strategy => Schreyer})
iAllt Module:= options -> I -> (
     pInfo(2, "iAllt (integrationAllWithTransfer) in trans.m2");
     WA := ring gens I;
     Mf := I;
     pInfo(2,Mf);
     n := numgens(WA) // 2;  -- do not use numgens(WA)/2 
     w := toList(n:1);

     outputRequest := {GenCycles, HomologyModules,
      VResolution, BFunction, Explicit};
     MF := cokernel Fourier relations Mf; 
     outputTable := computeRestriction (MF, w, -1, n+1,
      outputRequest, options);
     outputList := {BFunction => outputTable#BFunction,
      LocalizeMap => LocMap};
     outputList = outputList | { Input=> I };
     if outputTable#VResolution =!= null then 
     outputList = append(outputList, 
      VResolution => FourierInverse outputTable#VResolution)
     else outputList = append(outputList, VResolution => null);
     
     outputList = outputList | {
      PreCycles => hashTable apply(toList(0..n), 
           i -> (n-i => FourierInverse outputTable#GenCycles#i)),
      CohomologyGroups => hashTable apply(toList(0..n), 
           i -> (n-i => outputTable#HomologyModules#i)) };
     
     intTable := hashTable outputList;
     
     --P := DintegrationDeRham(Mf, w, Strategy => options.Strategy,
     --     Info => options.Info, ExplicitHomology => options.ExplicitHomology);

     if intTable#VResolution =!= null then (     
          pInfo(1, "Making the Koszul complex... ");
          createDpairs WA;
          Omega := Dres ideal WA.dpairVars#1;
          pInfo(1, "Transferring cohomology classes to deRham complex... ");
          dbl := Omega**(intTable#VResolution);
          pInfo(2,dbl); -- print double complex
          transfers := {};
          i := 0;
          while i <= n do (
           pull := intTable#PreCycles#i;
           j := 0;
           pInfo(2,{i,j,pull});
           pInfo(2, "\t Degree " | i | "...");
           tInfo := toString first timing (
                while j < n-i do (
                     vertMap := zeroize dbl#(n-i-1)^[(j,-j+n-i-1)]*
                     (dbl.dd#(n-i))*(dbl#(n-i)_[(j,-j+n-i)]);
                     push := vertMap*pull;
                     horMap := zeroize dbl#(n-i-1)^[(j,-j+n-i-1)]*
                     (dbl.dd#(n-i))*(dbl#(n-i)_[(j+1,-j+n-i-1)]);
                     if ((Dtransposition push) % (Dtransposition horMap) != 0)
                     then error "syzygy should be produced but wasn't!";
                     pull = (Dtransposition push) // (Dtransposition horMap);
                     pull = Dtransposition pull;
                     pInfo(2,{i,j,push,pull}); 
                     j = j+1;
                     );
                );
           pInfo(2, "\t\t\t time = " | tInfo | " seconds" );
           transfers = append(transfers, i => pull);
           i = i+1;
           );
          outputList = outputList | {TransferCycles => 
           hashTable transfers, OmegaRes => Omega};
          );
     hashTable outputList
     )

-- derLogF returns generators for widetilde{Der}(-log f)
-- Example:  QQ[x,y]
--           f = x*y*(x-y)
--           iAllt cokernel matrix derLogF(f)
derLogF = method();
derLogF RingElement := f -> (
  R := ring f;
  if class R =!= PolynomialRing
  then error "expected element of a polynomial ring";
  if R.monoid.Options.WeylAlgebra =!= {}
  then error "expected element of a commutative polynomial ring";
  v := generators(R);
  n := #v;
  d := apply(v, i->diff(i,f));
  d = join({f},d);
  syzf := kernel matrix{d};
  m := numgens syzf;
  -- msyz = gens syzf;
  msyz := gens syzf;
                                 --  note: msyz^{1}  get 1-th row
                                 --  note: msyz_{i} get i-th column
                                 --  note: msyz^{i}_{j} get (i,j)-element
                                 --  note: entries 
                                 --  note: #List,  length
  pInfo(2,msyz);
  -- see annFs.m2, oxclient.m2
  W := makeWeylAlgebra( R, SetVariables=>false);   --note: g=map(R,W,matrix{{x,y,0,0}}); g(x) does not work  
  phi := map(W,R);
  vw := generators(W);
  i:=0; j:=0; ell:=0; t:=0;
  op:={};
  while i<m do (  
    j = 1;
    ell=-phi msyz_(0,i);
    while j<=n do (
      ell = ell + phi msyz_(j,i) * vw_(n+j-1);
      j = j+1;
    );
    op = join(op,{ell});
    i = i+1;
  );
  {op}
)

logCohomology=method();
logCohomology RingElement := f -> (
     ii := derLogF f;
     iAllt(cokernel(matrix(ii)))
)

-- use S; logCohomology(x^3-y)   
-- Warning: do not input like logCohomology x^3-y

-- Example:
-- use S; f=(x^3+y^4+x*y^3)*(x^2+y^2); logCohomology f;
--  the transfer cycles contains dx and dy.
-- use S; f=(x^3+y^4+x*y^3)*(x^2-y^2); logCohomology f;
--  the transfer cycles contains dx and dy.

getTransfer=method();
getTransfer (HashTable,ZZ) := (cohom,k) -> (
  t:=cohom#TransferCycles;
  tk:=transpose(t)#k;
  entries(tk)
)

-- Example:
-- use S; f=x*y*(x-y); cc=logCohomology f; getReducedTransfer(cc,1);
-- use S; f=(x^3+y^4+x*y^3)*(x^2+y^2); cc=logCohomology f; getReducedTransfer(cc,1);
getReducedTransfer=method();
getReducedTransfer (HashTable,ZZ) := (cohom,k) -> (
  tmp:=cohom;
  tk:=getTransfer(cohom,k);
  -- cf. Dbasic.m2, holonomicRank
  W := ring(cohom#VResolution);
  createDpairs W;
  n := #(W.dpairInds#0);
  m := numgens W;
  -- get weight vectors for the order filtration refined 
  -- by lex on the derivatives
  weightList := { apply ( toList(0..m-1), i -> if member(i, W.dpairInds#1) 
     then 1 else 0 ) };
  -- ring equipped with the new order
  tempW := (coefficientRing W)(monoid [(entries vars W)#0,
            WeylAlgebra => W.monoid.Options.WeylAlgebra,
            Weights => weightList]);
  WtotempW := map (tempW, W, vars tempW);
  -- map to the lex ring.
  tktemp := apply(tk,i->apply(i,j->WtotempW(j)));
  iii := WtotempW( ((cohom#VResolution).dd)#1 );
  ggg := gb iii;
  tkreduced := apply(tktemp,i->apply(i,j-> (j % ggg)))
)

TEST ///
--Boundary cases
x = symbol x; y = symbol y;
R = QQ[x,y]
default := hashTable {0=>QQ^1, 1=>QQ^0, 2=>QQ^0};
F2 = deRham(1_R); -- affine space
assert all (keys default, i -> (F2#i == default#i));

--Small change doesn't affect deRham groups
F1 = deRham(x^2-30*y^3)
F2 = deRham(x^2-31*y^3)
assert all (keys F1, i -> (F1#i == F2#i));

--These lead to problems in factor at the moment
F1 = deRham(x^2-y^10)
F2 = deRham(2*x^2 - 3*y^10)
assert all (keys F1, i -> (F1#i == F2#i));    
///