1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
-- Copyright 1999-2002 by Anton Leykin and Harrison Tsai
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
-- The routine shifts returns the vector of degree shifts of matrix
-- m with respect to weight w, where the target is shifted by oldshifts
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
shifts := (m, w, oldshifts) -> (
tempmat := compress leadTerm m;
if numgens source tempmat == 0 then newshifts := {}
else (
expmat := matrix(apply(toList(0..numgens source tempmat - 1),
i -> (k := leadComponent tempmat_i;
append((exponents tempmat_(k,i))#0, oldshifts#k))));
newshifts = (entries transpose (
expmat*(transpose matrix{ append(w, 1) })) )#0;
);
newshifts)
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
-- The following routines are needed to use Mike's new engine schreyer code.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
debug Core
kerGB := m -> (
-- m should be a matrix which is a GB, and
-- whose source has the Schreyer order.
-- The resulting map will have the same form.
map(ring m, rawKernelOfGB raw m)
)
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--
-- Routine: "Dresolution" / Abbreviations: "Dres"
--
-- This routine computes a free resolution adapted to the weight vector w.
--
-- Input: I, an ideal, or M, a module
-- w, weight vector of the form (-u,u)
-- k, length of resolution
--
-- Output: Free resolution of (D/I) or (M) of length k adapted to
-- the filtration determined by w
--
-- Method: At each step of the resolution, computes a GB of the syzygy module
-- adapted to the w-filtration. Uses V-homogenization to do this.
--
-- Reference: Oaku-Takayama 1999, "Algorithms for D-modules"
--
-- Caveats:
-- 1. Resolutions not unique. In particular, stopping computation and
-- restarting it can give a different result than doing it all at once.
--
--
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Dres = method( Options => {Strategy => Schreyer, LengthLimit => infinity} )
Dres Ideal := options -> I -> ( Dresolution I )
Dres Module := options -> M -> ( Dresolution M )
Dres(Ideal,List) := options -> (I,w) -> ( Dresolution(I,w,options) )
Dres(Module,List) := options -> (M,w) -> ( Dresolution(M,w,options) )
Dresolution = method( Options => {Strategy => Schreyer, LengthLimit => infinity} )
Dresolution Ideal := options -> I -> (
Dresolution((ring I)^1/I, options)
)
Dresolution Module := options -> M -> (
pInfo (1, "ENTERING Dresolution ... ");
W := ring M;
N := presentation M;
pInfo (1, "Computing usual resolution using Schreyer order ...");
pInfo (2, "\t Degree " | 0 | "...");
pInfo (2, "\t\t\t Rank = " | rank target N | "\t time = 0. seconds");
pInfo (2, "\t Degree " | 1 | "...");
tInfo := toString first timing (m := schreyerOrder gens gb N);
pInfo (2, "\t\t\t Rank = " | rank source N | "\t time = " |
tInfo | " seconds");
M.cache.resolution = new ChainComplex;
M.cache.resolution.ring = W;
M.cache.resolution#0 = target m;
M.cache.resolution#1 = source m;
M.cache.resolution.dd#0 = map(W^0, target m, 0);
M.cache.resolution.dd#1 = m;
i := 2;
while source m != 0 and i <= options.LengthLimit do (
pInfo (2, "\t Degree " | i | "...");
tInfo = toString first timing (m = kerGB m);
M.cache.resolution#i = source m;
M.cache.resolution.dd#i = m;
pInfo(2, "\t\t\t Rank = " | rank source m | "\t time = " |
tInfo | " seconds");
i = i+1;
);
M.cache.resolution.length = i-1;
M.cache.resolution
)
Dresolution (Ideal, List) := options -> (I, w) -> (
Dresolution ((ring I)^1/I, w, options)
)
Dresolution (Module, List) := options -> (M, w) -> (
pInfo (1, "ENTERING Dresolution ... ");
-- ERROR CHECKING:
W := ring M;
k := options.LengthLimit;
-- check that W is a Weyl algebra
if W.monoid.Options.WeylAlgebra == {}
then error "expected a Weyl algebra";
if any(W.monoid.Options.WeylAlgebra, v -> class v =!= List)
then error "expected non-homogenized Weyl algebra";
-- check that w is of the form (-u,u)
createDpairs W;
if #w =!= numgens W
then error ("expected weight vector of length " | numgens W);
if any( toList(0..#W.dpairInds#0 - 1),
i -> ( w#(W.dpairInds#0#i) + w#(W.dpairInds#1#i) != 0 ) )
then error "expected weight vector of the form (-u,u)";
-- PREPROCESSING
if k == infinity then (
pInfo (1, "Computing adapted free resolution of length infinity using "
| toString options.Strategy | " method...");
if (options.Strategy == Vhomogenize) then
pInfo(2, "Warning: resolution via Vhomogenize might not terminate");
)
else pInfo (1, "Computing adapted free resolution of length " | k |
" using " | toString options.Strategy | " method...");
homVar := symbol homVar;
hvw := symbol hvw;
if options.Strategy == Schreyer then (
-- Make the homogenizing weight vector in HW
Hwt := toList(numgens W + 1:1);
-- Make the V-filtration weight vector in HW
Vwt := append(w,0);
-- Make the homogeneous Weyl algebra
HW := (coefficientRing W)(monoid [(entries vars W)#0, homVar,
WeylAlgebra => append(W.monoid.Options.WeylAlgebra, homVar),
MonomialOrder => {Weights=>Hwt, Weights=>Vwt, GRevLex}]);
homVar = HW_homVar;
WtoHW := map(HW, W, (vars HW)_{0..numgens W - 1});
HWtoW := map(W, HW, (vars W)_{0..numgens W - 1} | matrix{{1_W}});
-- Also make the homogenizing Weyl algebra for shifts
VW := (coefficientRing W)(monoid [hvw, (entries vars W)#0,
WeylAlgebra => W.monoid.Options.WeylAlgebra,
MonomialOrder => Eliminate 1]);
HWtoVW := map(VW, HW, (vars VW)_{1..numgens W} | matrix{{VW_0}});
VWtoHW := map(HW, VW, matrix{{homVar}} | (vars HW)_{0..numgens HW - 2});
hvwVar := VW_0;
HVWwt := prepend(-1,w);
VWwt := prepend(0,w);
)
else if options.Strategy == Vhomogenize then (
Hwt = prepend(-1,w);
Vwt = prepend(0,w);
-- make the homogenizing Weyl algebra
HW = (coefficientRing W)(monoid [homVar, (entries vars W)#0,
WeylAlgebra => W.monoid.Options.WeylAlgebra,
MonomialOrder => Eliminate 1]);
homVar = HW_homVar;
WtoHW = map(HW, W, (vars HW)_{1..numgens W});
HWtoW = map(W, HW, matrix{{1_W}} | (vars W));
);
-- CREATE AND INITIALIZE THE CHAIN COMPLEX
--else
N := presentation M;
--if (isSubmodule M) then N := presentation ((ambient M)/M);
-- get the degree shifts right (need to check this against OT paper)
if not M.cache.?resolution
then M.cache.resolution = new MutableHashTable;
M.cache.resolution#w = new ChainComplex;
M.cache.resolution#w.ring = W;
s := rank source N;
t := rank target N;
M.cache.resolution#w#0 = target N;
M.cache.resolution#w.dd#0 = map(W^0, M.cache.resolution#w#0, 0);
-- MAKE THE FIRST STEP OF THE RESOLUTION
shiftvec := apply(degrees target N, i -> i#0);
tempMap := map(HW^(-shiftvec), HW^(rank source N), WtoHW N);
pInfo (2, "\t Degree 0...");
pInfo (2, "\t\t\t Rank = " | t | "\t time = 0 seconds");
pInfo (3, "\t Degree 1...");
tInfo := toString first timing (
Jgb := gens gb homogenize(tempMap, homVar, Hwt);
if options.Strategy == Schreyer then Jgb = schreyerOrder Jgb;
if options.Strategy == Schreyer then (
tempMat := map(VW^(-shiftvec), VW^(numgens source Jgb), HWtoVW(Jgb));
shiftvec = shifts(homogenize(HWtoVW Jgb, hvwVar, HVWwt),
VWwt, shiftvec);
)
else shiftvec = shifts(Jgb, Vwt, shiftvec);
M.cache.resolution#w#1 = W^(-shiftvec);
M.cache.resolution#w.dd#1 = map(M.cache.resolution#w#0,
M.cache.resolution#w#1, HWtoW Jgb);
);
pInfo(2, "\t\t\t Rank = " | #shiftvec | "\t time = " |
tInfo | " seconds");
startDeg := 2;
-- COMPUTE REST OF THE RESOLUTION
i := startDeg;
while i < k+1 and numgens source Jgb != 0 do (
pInfo (2, "\t Degree " | i | "...");
tInfo = toString first timing (
if options.Strategy == Schreyer then Jgb = kerGB Jgb
else if options.Strategy == Vhomogenize then (
-- compute the kernel / syzygies
Jsyz := syz Jgb;
-- put syzygies in the free module with the correct degree shifts
Jsyzmap := map(HW^(-shiftvec), HW^(numgens source Jsyz), Jsyz);
-- compute an adapted (-w,w)-GB of the syzygies module
Jgb = gens gb homogenize(Jsyzmap, homVar, Hwt);
);
if options.Strategy == Schreyer then (
tempMat = map(VW^(-shiftvec), VW^(numgens source Jgb), HWtoVW(Jgb));
shiftvec = shifts(homogenize(tempMat, hvwVar, HVWwt),
VWwt, shiftvec);
)
else shiftvec = shifts(Jgb, Vwt, shiftvec);
M.cache.resolution#w#i = W^(-shiftvec);
M.cache.resolution#w.dd#i = map(M.cache.resolution#w#(i-1),
M.cache.resolution#w#i, HWtoW Jgb);
);
pInfo(2, "\t\t\t Rank = " | #shiftvec | "\t time = " |
tInfo | " seconds");
i = i+1;
);
M.cache.resolution#w
)
TEST ///
-- Boundary cases
x = symbol x; Dx = symbol Dx;
W = QQ[x, Dx, WeylAlgebra => {x=>Dx}];
I = ideal 0_W;
J = ideal 1_W;
w = {-1,1}
assert( Dres(I) == Dres(I, w) );
assert( Dres(W^1/I) == Dres(W^1/I, w) );
assert( Dres(module I) == Dres(module I, w) );
assert( Dres(J) == Dres(J, w) );
assert( Dres(W^1/J) == Dres(W^1/J, w) );
assert( Dres (module J) == Dres(module J, w) );
-- Resolutions in the same res Grobner cone
A = matrix{{1,1,1},{1,3,6}};
b = {3,2};
I = gkz(A,b);
F1 = Dres(I, {-1,-2,-21,1,2,21});
F2 = Dres(I, {-1,-2,-20,1,2,20});
assert all(toList(0..length F1), i -> F1.dd#i - F2.dd#i == 0);
F3 = Dres(I, {-1,-2,-21,1,2,21}, Strategy => Vhomogenize);
F4a = Dres(I, {-1,-2,-20,1,2,20}, Strategy => Vhomogenize);
assert all(toList(0..length F3), i -> F3.dd#i - F4a.dd#i == 0);
F5 = Dres(I, {-3,-1,-3,3,1,3});
assert(F5.dd#1 - gbw(gens I, {-3,-1,-3,3,1,3}) == 0);
///
|