File: Dsystems.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (264 lines) | stat: -rw-r--r-- 7,790 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
-- Copyright 1999-2002 by Anton Leykin and Harrison Tsai
needsPackage "FourTiTwo"; -- Needed only for gkz


-----------------------------------------
-- GKZ related things
-----------------------------------------

gkzInputValidation = method();
gkzInputValidation (Matrix, List, PolynomialRing) := (A, b, W) -> (
    if (numRows A != #b) then
        error "expected number of rows of A to equal length of b in gkz(A,b,W)";
    if W.monoid.Options.WeylAlgebra === {} then 
        error "expected a Weyl algebra";
    createDpairs W;
    if #W.dpairVars#0 != numColumns A then
        error "expected number of columns of A to equal number of \"x\"s of Weyl algebra in gkz(A,b,W)";
    )
gkzInputValidation (Matrix, PolynomialRing) := (A, W) -> gkzInputValidation(A, toList((numRows A): 0), W)


eulerOperators = method();
eulerOperators (Matrix, List, PolynomialRing) := (A, b, W) -> (
    gkzInputValidation(A, b, W);
    apply(numRows A, i -> sum(numColumns A, j -> A_(i,j) * W.dpairVars#0#j * W.dpairVars#1#j) - b#i)
    )
eulerOperators (Matrix, PolynomialRing) := (A, W) -> eulerOperators(A, toList((numRows A): 0), W)


toricIdealPartials = method();
toricIdealPartials (Matrix, PolynomialRing) := (A, W) -> (
    gkzInputValidation(A, W);
    -- Extract the polynomial ring of the partials
    partialsRing := extractDiffsAlgebra W;
    -- Make the toric ideal
    toricMarkov(A, partialsRing)
    )


-- This routine returns the GKZ hypergeometric system of PDE's associated
-- to the matrix A and the parameter vector b.
gkz = method();
gkz(Matrix, List, PolynomialRing) := (A, b, W) -> (
    gkzInputValidation(A, b, W);
    
    d := numRows A;
    n := numColumns A;
        
    -- Make the toric ideal
    toricIdeal := toricIdealPartials(A, W);
    
    -- Make the Euler operators
    eulerOpsWithBeta := eulerOperators(A, b, W);
    
    -- Make the gkz ideal
    ideal eulerOpsWithBeta + (map(W, ring toricIdeal)) toricIdeal
    )

gkz(Matrix, List) := (A, b) -> (
    d := numRows A;
    n := numColumns A;
    D := symbol D;
    x := symbol x;
    W := QQ(monoid [x_1 .. x_n, D_1 .. D_n,
	WeylAlgebra => apply(toList(1..n), i -> x_i=>D_i)]);
        
    gkz(A, b, W)
    )
    
-- Appell F1 system --
AppellF1 = method(Options => {Vars => Global})
AppellF1 List := options -> w -> (
     if #w != 4 then error "expected list of 4 parameters";
     if options.Vars == Local then (
     	  u := symbol u;
     	  v := symbol v;
     	  Du := symbol Du;
     	  Dv := symbol Dv;
     	  W := QQ[u, v, Du, Dv, 
	       WeylAlgebra => {u=>Du, v=>Dv}];
     	  I := ideal(u*Du*(u*Du+v*Dv+w#3-1) - u*(u*Du+v*Dv+w#0)*(u*Du+w#1),
	       v*Dv*(u*Du+v*Dv+w#3-1) - v*(u*Du+v*Dv+w#0)*(v*Dv+w#2),
	       (u-v)*Du*Dv - w#2*Du + w#1*Dv);
	  )
     else (
	  x := symbol x; y := symbol y; Dx := symbol Dx; Dy := symbol Dy; 
     	  W = QQ[x, y, Dx, Dy, 
	       WeylAlgebra => {x=>Dx, y=>Dy}];
     	  I = ideal(x*Dx*(x*Dx+y*Dy+w#3-1) - x*(x*Dx+y*Dy+w#0)*(x*Dx+w#1),
	       y*Dy*(x*Dx+y*Dy+w#3-1) - y*(x*Dx+y*Dy+w#0)*(y*Dy+w#2),
	       (x-y)*Dx*Dy - w#2*Dx + w#1*Dy);
	  );
     --J = ideal(I_2, I_1+y^2*I_2); 
     I)


--------------------------------------
-- Other things
--------------------------------------

-- This routine takes a polynomial element f of the Weyl algebra 
-- and returns its annihilator ideal.
PolyAnn = method()
PolyAnn RingElement := f -> (
     W := ring f;
     createDpairs W;
     dpV := W.dpairVars;
     -- error checking
     if W.monoid.Options.WeylAlgebra === {} then
     error "Expected element of a Weyl algebra";
     if substitute(f, (dpV#1 | dpV#2) / (i->(i=>0))) != f then
     error "Expected polynomial element of Weyl algebra";
     if W.monoid.Options.Degrees =!= toList(numgens W:{1}) then
     error "Expect all degrees in a Weyl algebra to be 1";
     tempL := (dpV#1 / (i -> 2*f*i - i*f));  -- (fD_i - df/dx_i)
     suffHigh := (degree f)#0 + 1;
     tempL = join(tempL, (dpV#1 / (i -> i^suffHigh)));  -- D_i^(large m)
     ideal tempL
     )

-- This routine takes a polynomial element f of the Weyl algebra 
-- and returns the annihilator ideal of 1/f, or takes two polynomials
-- g and f and returns the annihilator ideal of g/f
RatAnn = method()
RatAnn RingElement := f -> (
     W := ring f;
     RatAnn(1_W, f)
     )

RatAnn(RingElement, RingElement) := (g,f) -> (
     W := ring f;
     createDpairs W;
     dpV := W.dpairVars;
     -- error checking
     if W =!= ring g then
     error "Expected elements of the same ring";
     if W.monoid.Options.WeylAlgebra === {} then
     error "Expected element of a Weyl algebra";
     if substitute(f, (dpV#1 | dpV#2) / (i->(i=>0))) != f then
     error "Expected polynomial element of Weyl algebra";
     if substitute(g, (dpV#1 | dpV#2) / (i->(i=>0))) != g then
     error "Expected polynomial element of Weyl algebra";
     if W.monoid.Options.Degrees =!= toList(numgens W:{1}) then
     error "Expect all degrees in a Weyl algebra to be 1";

     -- get min root of b-function
     a := min getIntRoots globalBFunction f;

     IFs := AnnFs f;
     WFs := ring IFs;
     nFs := numgens WFs;
     Ia := substitute ( substitute(IFs, {WFs_(nFs-1) => a}), W);
     
     if a == -1 and g == 1_W then Ia
     else (
	  compensate := -1 - a;
	  F := map(W^1/Ia, W^1, matrix{{g*f^compensate}});
	  ideal mingens kernel F)
     )

-- reiffen curves
reiffen = method()
reiffen(ZZ,ZZ) := (p,q) -> (
     if not (p>=4 and q>=p+1) then error "wrong values of arguments: see documentation";
     n := 2; 
     x := symbol x;
     R := QQ[x_1..x_n]; 
     x_1^p+x_2^q+x_1*x_2^(q-1) 
     )

TEST///
------------------------------------
-- A = {{1,1,1},{0,1,2}}; custom W
------------------------------------
W = makeWeylAlgebra(QQ[x_0..x_2]);
A = matrix{{1,1,1},{0,1,2}};

for b in {{1,2}, {-1,3}, {1/2, 1/3}} do (
    gkzIdl = 
    gkz(A,b,W);
    correctGkzIdl = ideal( dx_1^2 - dx_0*dx_2,
			   x_0*dx_0 + x_1*dx_1 + x_2*dx_2 - b_0,
			   x_1*dx_1 + 2*x_2*dx_2 - b_1 );
    assert(gkzIdl == correctGkzIdl);
    );
///

TEST///
---------------------------------------
-- A = {{1,1,1},{0,1,2}}; no W
---------------------------------------
A = matrix{{1,1,1},{0,1,2}};
x_1 = "test1";
x_2 = "test2";
x_3 = "test3";
D_1 = "test4";
D_2 = "test5";
D_3 = "test6";
for b in {{1,2}, {-1,3}, {1/2, 1/3}} do (
    gkzIdl = gkz(A, b);
    
    -- Confirm that gkz didn't change x_i's or D_i's
    assert(x_1 == "test1");
    assert(x_2 == "test2");
    assert(x_3 == "test3");
    assert(D_1 == "test4");
    assert(D_2 == "test5");
    assert(D_3 == "test6");
    
    W' = ring gkzIdl;
    correctGkzIdl = ideal( W'_4^2 - W'_3*W'_5,
			   W'_0*W'_3 + W'_1*W'_4 + W'_2*W'_5 - b_0,
			   W'_1*W'_4 + 2*W'_2*W'_5 - b_1);
    assert(gkzIdl == correctGkzIdl);
    );
///


TEST///
---------------------------------------
-- A = {{1,1},{0,1}}; W;
---------------------------------------
W = makeWeylAlgebra(QQ[x,y]);
A = matrix{{1,1},{0,1}};
b = {0,0};
gkzIdl = gkz(A, b, W);
correctGkzIdl = ideal(x*dx + y*dy, y*dy);
assert(gkzIdl == correctGkzIdl);
///



TEST///
----------------------------
-- A = {{1,1},{0,1}}; no b
----------------------------
W = makeWeylAlgebra(QQ[x,y]);
A = matrix{{1,1},{0,1}};
correctEuls = {x*dx + y*dy, y*dy};
assert(eulerOperators(A, W) == correctEuls);
///

TEST///
----------------------------
-- A = {{1,1},{0,1}}; b
----------------------------
W = makeWeylAlgebra(QQ[x,y]);
A = matrix{{1,1},{0,1}};
b = {1,2}
correctEuls = {x*dx + y*dy - 1, y*dy - 2};
assert(eulerOperators(A, b, W) == correctEuls);
///

TEST///
----------------------------
-- A = {{1,1,1},{0,1,2}};
----------------------------
W = makeWeylAlgebra(QQ[x,y,z]);
A = matrix{{1,1,1},{0,1,2}};
I = toricIdealPartials(A, W);
R = ring I;
correctI = ideal(R_1^2 - R_0*R_2);
assert(I == correctI);
///