1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
-- Copyright 1999-2002 by Anton Leykin and Harrison Tsai
-----------------------------------------------------------------------
-- bFunction (I, w) -> bf
-- I = holonomic ideal in a Weyl algebra with no parameters
-- w = weight
-- bf = b-function of I with respect to w (polynomial
-- in K[$s], where K is the coefficient ring)
--
-- (method: algorithms 5.1.5 and 5.1.6 in Saito-Strumfels-Takayama)
-----------------------------------------------------------------------
bFunction = method(Options => {Strategy => IntRing})
-- makes polynomial f monic (internal)
makeMonic := f -> ( if coefficientRing ring f === QQ
then (1 / (leadCoefficient f)) * f
else (1 // (leadCoefficient f)) * f
);
-- lifts the coeffs of a polynomial to QQ,
-- returns error if QQ is not a subring of a coefficient ring
-- (internal)
makeQQ := f -> (
local R;
s := symbol s;
if ring f === QQ or f === 0 then (
R = QQ[s];
if not member(QQ, R.baseRings) then
error "QQ is not a base ring of R";
if f == 0 then 0_R
else sum(listForm f, u -> lift(u#1, QQ) * s^(sum u#0))
)
else (
R = (coefficientRing ring f)[s];
if f == 0 then 0_R
else sum(listForm f, u -> u#1 * s^(sum u#0))
)
);
-- trivial intersection strategy (internal)
bfIntRing := method()
bfIntRing(Ideal, List) := (I, w) -> (
local tInfo;
-- prep work
if not (ring I).?IntRing then
createIntRing (ring I);
createDpairs (ring I);
W := ring I;
IR := W.IntRing;
dpV := W.dpairVars;
dpI := W.dpairInds;
-- sanity check
if (#(dpI#2) != 0) then
error "expected no central variables in Weyl algebra";
if (#w != ((numgens W) // 2)) then
error "expected weight vector of length " | ((numgens W) // 2);
w = apply(numgens W, i -> (
p := position(dpI#1, u -> u == i);
if p =!= null then w#p
else (
p = position(dpI#0, u -> u == i);
-w#p
)
));
-- compute in_(-w,w) (I)
inI := inw(I, w);
n := #(dpI#0);
eulerOp := sum(n, i -> w_(dpI#1#i)*(dpV#0#i)*(dpV#1#i));
elimIdeal := W.RtoIR inI + ideal (W.RtoIR eulerOp - IR_(numgens(IR) - 1));
pInfo(2, "computing elimIdealGB... ");
tInfo = toString first timing(
elimIdealGB := gens gb elimIdeal;
);
pInfo(3, " elimIdealGB = " | toString elimIdealGB);
pInfo(2, " time = " | tInfo);
-- take the generator of J and cook up the b-function
bGen := selectInSubring(1,elimIdealGB);
bfcn := (
if numgens source bGen == 0 then 0
else makeMonic (mingens ideal bGen)_(0,0)
);
makeQQ bfcn
);
-- TryGeneric or NonGeneric strategy (internal)
bfGenericOrNonGeneric := method(Options => {Strategy => TryGeneric})
bfGenericOrNonGeneric(Ideal, List) := o -> (I, w) -> (
local tInfo;
-- prep work
if not (ring I).?ThetaRing then
createThetaRing (ring I);
if not (ring I).ThetaRing.?IntRing then
createIntRing (ring I).ThetaRing;
createDpairs (ring I);
W := ring I;
T := W.ThetaRing;
TI := T.IntRing;
dpV := W.dpairVars;
dpI := W.dpairInds;
-- sanity check
if (#(dpI#2) != 0) then
error "expected no central variables in Weyl algebra";
if (#w != ((numgens W) // 2)) then
error ("expected weight vector of length " | ((numgens W) // 2));
w = apply(numgens W, i -> (
p := position(dpI#1, u -> u == i);
if p =!= null then w#p
else (
p = position(dpI#0, u -> u == i);
-w#p
)
));
-- compute in_(-w,w) (I)
inI := inw(I, w);
n := #(dpI#0);
eulerOp := sum(n, i -> w_(dpI#1#i)*(dpV#0#i)*(dpV#1#i));
-- two different strategies can be used
local intIdeal;
if (o.Strategy == TryGeneric) and
(-- "isGeneric" check
pInfo(2, "'isGeneric' check... ");
tInfo = toString first timing(
isIt := all(flatten entries gens inI, W.isGeneric)
);
pInfo(2, " time = " | tInfo);
isIt
)
then(
-- GENERIC
pInfo(1, "b-function: Using GENERIC strategy... ");
intIdeal = inI;
)
else(
-- NON-GENERIC
pInfo(1, "b-function: Using NON-GENERIC strategy... ");
pInfo(2, "Calculating intIdeal... ");
tInfo = toString first timing(
dpI' := {select(dpI#0, i -> w#i != 0), select(dpI#1, i -> w#i != 0)};
dpI'' := {select(dpI#0, i -> w#i == 0), select(dpI#1, i -> w#i == 0)};
-- want: eliminate all u_i, v_i as well as x_i, dx_i of weight 0
u := symbol u;
v := symbol v;
UV := (coefficientRing W)(monoid [ (dpI'#0) / (i -> u_i), (dpI'#1) / (i -> v_i),
(dpI''#0) / (i -> W_i), (dpI''#1) / (i -> W_i),
(dpI'#0) / (i -> W_i), (dpI'#1) / (i -> W_i),
WeylAlgebra => W.monoid.Options.WeylAlgebra,
MonomialOrder => Eliminate (2 * #dpI#0) ]);
WtoUV := map(UV, W, matrix { apply(numgens W, i -> (
if member(i, dpI'#0) then
(UV_(u_i) * substitute(W_i, UV))
else if member(i, dpI'#1) then (substitute(W_i, UV) * UV_(v_i))
else substitute(W_i, UV)
))
});
intGB := gens gb ((WtoUV inI)
+ ideal apply(#dpI'#0, i -> (UV_(u_(dpI'#0#i)) * UV_(v_(dpI'#1#i)) - 1)
));
intIdeal = ideal substitute(selectInSubring(1, intGB), W);
);
pInfo(2, " time = " | tInfo);
);
pInfo(3, " intIdeal = " | toString (intIdeal));
-- compute J = intIdeal \cap K[\theta]
pInfo(2, "computing elimIdealGB... ");
intIdealGens := first entries gens intIdeal;
tInfo = toString first timing(
elimIdeal := (T.RtoIR (if #intIdealGens==0 then ideal T
else ideal ( intIdealGens/ W.WtoT )))
+ ideal(TI_(numgens TI - 1) - T.RtoIR W.WtoT eulerOp);
elimIdealGB := gens gb elimIdeal;
);
pInfo(3, " elimIdealGB = " | toString elimIdealGB);
pInfo(2, " time = " | tInfo);
-- take the generator of J and cook up the b-function
bGen := selectInSubring(1,elimIdealGB);
bfcn := (
if numgens source bGen == 0 then 0_TI
else makeMonic (mingens ideal bGen)_(0,0)
);
makeQQ bfcn
);
bFunction(Ideal, List) := RingElement => o -> (I, w) -> (
result := (
if o.Strategy == IntRing then bfIntRing(I, w)
else if o.Strategy == TryGeneric or o.Strategy == NonGeneric
then bfGenericOrNonGeneric(I, w, o)
else error "wrong Strategy option"
);
result
);
-- factors a b-function
factorBFunction = method()
factorBFunction(RingElement) := Product => f -> (
R := ring f;
-- sanity check
if numgens R != 1 then
error "polynomial ring of one variable expected";
if coefficientRing R =!= QQ then
error "expected polynomial over QQ";
l := listForm f;
d := product(l, u -> denominator(u#1));
l = l / (u -> (u#0, lift(u#1*d, ZZ)));
R' := ZZ(monoid [R_0]);
f = sum (l, u -> u#1*R'_(u#0));
f = factor f;
f = select(f, u-> first degree u#0 > 0);
result := apply(f, u->(
if first degree u#0 != 1 then error "internal error: incorrect b-function";
coeff := listForm u#0 / (v->v#1);
Power(R_0 + (if #coeff> 1 then (coeff#1/coeff#0) else 0), u#1)
));
if #result==0 then 1_R' else result
);-- end factorBFunction
bFunctionRoots = method()
bFunctionRoots RingElement := List => f -> (
if f==1 then {} else apply(toList factorBFunction f,
u -> - leadCoefficient substitute(u#0, {(ring u#0)_0 => 0_(ring u#0)}) )
);
getIntRoots = method()
getIntRoots RingElement := List => f -> (
roots := bFunctionRoots f;
roots = select(roots, u -> denominator u == 1);
apply(roots, u -> numerator u)
);-- end getIntRoots
TEST ///
Dtrace 1
pInfo(1, "testing globalBFunction...")
for str in {IntRing, TryGeneric, NonGeneric, GeneralBernsteinSato} do (
print str;
x = symbol x; dx = symbol dx;
R = QQ[x, dx, WeylAlgebra => {x=>dx}];
n = 10;
f = x^n;
b = globalBFunction(f, Strategy => str);
assert ((n^n * b) == (
use ring b;
s := (ring b)_0;
product(n, i -> n * (s + 1) - i)
))
);
clearAll()
pInfo(1, "testing generalB...")
for str in {InitialIdeal, StarIdeal} do (
pInfo(1, "Strategy=>" | toString str);
R = QQ[x_1..x_4];
F = {x_3*x_1^2 + x_4*x_2^3};
b = {1_R,x_1,x_2} / (g->toString factorBFunction generalB (F,g,Strategy=>str));
assert(toString b == "{(s+1)*(s+2)*(s+3/2)*(s+4/3)*(s+5/3)*(s+5/6)*(s+7/6), (s+1)*(s+2)*(s+5/2)*(s+4/3)*(s+5/3)*(s+11/6)*(s+13/6), (s+1)*(s+2)*(s+3/2)*(s+5/3)*(s+7/3)*(s+7/6)*(s+11/6)}")
);
assert(toString factorBFunction generalB (F,1_R,Exponent=>2) == "(s+1)*(s+2)^2*(s+3)*(s+3/2)*(s+5/2)*(s+4/3)*(s+5/3)*(s+7/3)*(s+8/3)*(s+5/6)*(s+7/6)*(s+11/6)*(s+13/6)")
///
|