1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
eliminateWA = method()
eliminateWA (Ideal, List) := Ideal => (I,v) -> (
R := ring I;
if not all(v,g->isSubset(set {g},set gens R) ) then error "expected generators of the ring";
w := apply(gens R, g->if isSubset(set{g}, set v) then 1 else 0);
W := (coefficientRing R)(monoid [gens R, WeylAlgebra => R.monoid.Options.WeylAlgebra, MonomialOrder=>{Weights=>w}]);
G := flatten entries gens gb sub(I,W);
sub(ideal select(G, f->all(listForm f, m->sum(numgens W, i->m#0#i*w#i) ==0)),R)
)
protect s -- is this right? should s be visible to the user?
computeJf = method()
computeJf RingElement := Ideal => f -> (
if #(options (ring f).monoid)#WeylAlgebra > 0 -- isWA
then (
D := ring f;
)
else (
R := ring f;
D = makeWeylAlgebra(R,SetVariables=>false);
f = sub(f,D);
);
-- assume D = k<x_1..x_n,dx_1..dx_n>
n := numgens D//2;
K := coefficientRing D;
w := toList(n:0) | {1};
inIf := inw(AnnFs {f}, -w|w);
Dt := ring inIf;
x := take(gens Dt,{0,n-1});
dx := take(gens Dt,{n+1,n+n});
t := Dt_n; dt := Dt_(2*n+1);
I1 := eliminateWA(inIf,dx);
I2 := ideal apply(I1_*, g->(
d := first degree g;
if d>0 then t^d*g
else dt^(-d)*g
));
Rtdts := K (monoid [x,t,dt,global s, WeylAlgebra=>{t=>dt}]);
s := Rtdts_(n+2);
Rs := K (monoid [s,x,Degrees=>{1}|toList(n:0),MonomialOrder=>Eliminate 1]);
I3a := eliminateWA(
sub(I2,Rtdts) + ideal(
s + Rtdts_(n+1)*Rtdts_(n) -- s+dt*t
),
{Rtdts_(n),Rtdts_(n+1)} -- {t,dt}
);
/// I3b := eliminate(
sub(I2,Rtdts) + ideal(
s + Rtdts_(n+1)*Rtdts_(n) -- s+dt*t
),
{Rtdts_(n),Rtdts_(n+1)} -- {t,dt}
);
if I3b != I3a then error "eliminate is wrong!";
///;
sub(I3a,Rs)
)
exceptionalLocusB = method(Options => {Strategy => Syzygies})
-- find an algebraic set where b is not a multiple of the local b-function of f
exceptionalLocusB (RingElement,RingElement) := RingElement => o -> (f,b) -> (
if #(options (ring f).monoid)#WeylAlgebra > 0 -- isWA
then (
D := ring f;
R := null;
)
else (
R = ring f;
D = makeWeylAlgebra(R,SetVariables=>false);
f = sub(f,D);
);
I3 := computeJf f;
exceptionalLocusB(R,I3,b,o)
)
protect ColonIdeal
-- this version performs the computation given (ring f, I3, b)
exceptionalLocusB (Ring,Ideal,RingElement) := RingElement => o -> (R,I3,b) -> (
Rs := ring I3;
K := coefficientRing Rs;
s := Rs_0;
n := numgens Rs - 1;
x := take(gens Rs,{1,n});
-- make everything live in Rs
b = (map(Rs,ring b,{(ring b)_0=>s})) b;
--
if R === null then R = K (monoid [x]);
--
(t,ret) := toSequence timing (
if o.Strategy === Syzygies then (
gbI3 := gb I3; -- eliminate s
exceptionalLocusB(R,gbI3,b,o)
)
else if o.Strategy === ColonIdeal then -- eliminate s from I3:b
sub(ideal selectInSubring(1, gens gb (I3 : b)),R)
else error "unknown Strategy"
);
pInfo(2,"exceptionalLocusB: time = "|toString t);
ret
)
exceptionalLocusB (Ring,GroebnerBasis,RingElement) := RingElement => o -> (R,gbI3,b) -> (
Rs := ring gbI3;
s := Rs_0;
b = (map(Rs,ring b,{(ring b)_0=>s})) b;
G3 := flatten entries gens gbI3;
reducedB := b%gbI3;
d := first degree reducedB;
if d < 0 then ideal 1_R
else (
-- (1)
-- return time sub(ideal selectInSubring(1, gens gb (ideal select(G3,g->degree(s,g)<=d) : reducedB)),R);
-- (2)
syz1 := syz(matrix{{reducedB}|select(G3,g->degree(s,g)<=d)}, SyzygyRows=>1);
retI := --time
sub(ideal first entries selectInSubring(1, gens gb syz1),R);
if retI == 0 then error "zero"
else return retI;
--(3)
toRVector := p->apply(d + 1, i->sum(select(listForm p, t->t#0#0 == i), t->t#1*R_(drop(t#0,1))));
G3up2d := flatten apply(G3,g -> apply(d-degree(s,g)+1, i->g*s^i)); -- take all GB elems and their multiples up to degree d
M := apply(G3up2d, toRVector);
time quotient(image transpose matrix M, R*(vector toRVector reducedB))
--M := apply({reducedB} | G3up2d, toRVector);
--time ideal first entries syz transpose matrix M
)
)
localBFunctionStrata = method()
localBFunctionStrata RingElement := HashTable => f -> (
if #(options (ring f).monoid)#WeylAlgebra > 0 -- isWA
then error "Weyl algebra not expected"
else (
R := ring f;
D := makeWeylAlgebra(R,SetVariables=>false);
f = sub(f,D);
);
I3 := computeJf f;
gbI3 := gb I3;
-- compute global b-function and its roots
gB := globalBFunction f;
S := ring gB; s = S_0;
roots := bFunctionRoots gB;
strata := new MutableHashTable;
for r in roots do (
b := gB;
while b%(s-r) == 0 do (
b = b//(s-r);
pInfo(3, factorBFunction b);
myLocus := exceptionalLocusB(R,gbI3,b);
if getDtrace()>9 then (
"exceptionalLocusB(...,Strategy=>Syzygies)" << myLocus << endl;
myLocus2 := exceptionalLocusB(R,I3,b,Strategy=>ColonIdeal);
"exceptionalLocusB(...,Strategy=>ColonIdeal)" << myLocus2 << endl;
assert(myLocus==myLocus2)
);
strata#b = myLocus;
)
);
strata
)
localBFunction = method(TypicalValue => RingElement)
localBFunction (RingElement,Ideal) := RingElement => (f,P) -> (
if ring f =!= ring P then error "same ring for polynomial and ideal expected";
R := ring f;
D := makeWeylAlgebra(R,SetVariables=>false);
f = sub(f,D);
I3 := computeJf f;
gbI3 := gb I3;
-- compute global b-function and its roots
gB := globalBFunction f;
S := ring gB; s := S_0;
roots := bFunctionRoots gB;
b := gB;
for r in roots do (
while b%(s-r) == 0 do (
b' := b//(s-r);
locus := exceptionalLocusB(R,gbI3,b');
if isSubset(locus,P) -- if point P is in the locus
then break
else b = b';
)
);
b
)
TEST ///
Dtrace 1
pInfo(1, "testing localBFunction...")
R = QQ[x,y]; f = x^2*(x+y+1); P = ideal(x,y);
b = localBFunction(f,P)
assert(toString b == "s^2+(3/2)*s+1/2")
assert(localBFunction(f,ideal 0_R) == 1)
assert(toString localBFunction(f,ideal 1_R) == toString globalBFunction f)
///
|