File: localCohom.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (526 lines) | stat: -rw-r--r-- 18,848 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
-- Copyright 1999-2002 by Anton Leykin and Harrison Tsai

local localCohomOT
local localCohomILOaku
local computeLocalCohomOT
local localCohomRegular
local preimage
local localCohomILOTW
local Generator
------------------------------------------------------------------
-- LOCAL COHOMOLOGY
-- 
-- Caveats: does not simplify the presentations of 
--          the cohomology modules returned
-------------------------------------------------------------------
localCohom = method(Options => {Strategy => Walther, LocStrategy => null})


----------------------------------------------------------------------------------------
-- computes the local cohomology H_I(R), where I is an ideal in a polynomial ring R.
-- using Walther's algorithm
--
-- option: Strategy (sets the way localizations are computed)
----------------------------------------------------------------------------------------

localCohom(      Ideal) := HashTable => o ->    I  -> localCohom(toList (0..numgens I), I, o)
localCohom(ZZ,   Ideal) := HashTable => o -> (n,I) -> (localCohom({n}, I, o))#n
localCohom(List, Ideal) := HashTable => o -> (l,I) -> (
     -- Promote I to the Weyl algebra if it is not already there
     if #(ring I).monoid.Options.WeylAlgebra == 0
     then I = sub(I, makeWA ring I); -- TODO: what degrees are best for the differentials?
     if (o.Strategy == Walther and o.LocStrategy === null)
     then localCohomUli (l,I)
     else (
	  R := ring I;
	  createDpairs R;
	  localCohom(l, I, R^1 / ideal R.dpairVars#1, o)
	  )
     );

localCohomUli = (l, I) -> (
     -- error checking to be added
     -- I is assumed to be an ideal in WA generated by polynomials
     f := first entries gens I;
     r := #f;
     W := ring I;
     subISets := select(subsets toList (0..r-1), s -> s =!= {});
                  
     -- Step1.
     -- Calculate J^/delta( (F_/theta)^s ) and b^/delta_(F_/theta)(s)   for all /theta
     pInfo(1, "localCohom: Computing b-functions and annihilators...");
     J := new MutableHashTable;
     bF := new MutableHashTable;
     scan(subISets, theta->(
	       Ftheta := product(theta, i->f#i);
	       J#theta = AnnFs(Ftheta);
	       bF#theta = globalBFunction(Ftheta);
	       ));
     
     -- Step 2.
     -- a = min integer root of all bF-s
     a := min flatten (subISets / (theta -> getIntRoots(bF#theta)));
     if a == infinity then a = 0;
     pInfo(666, {"BEST POWER = " , a});
     -- Substitute s = a in J-s
     scan(subISets, theta -> (
	       AforS := map(W, ring J#theta, vars W | matrix {{a_W}});
	       J#theta = AforS J#theta;
	       ));
     
     -- Step 3.
     -- Compute the Cech complex 
     C := new MutableList from toList ((r+1):());
     M := new MutableList from toList (r:());
     pInfo(1, "Constructing Cech complex...");
     C#0 = directSum { {} => W^1 / ideal W.dpairVars#1 };
     apply(toList(1..r), k->(
	       C#k = directSum (select(subISets, u -> #u == k) / (theta -> (
			      theta => W^1 / J#theta 
			      )));
	       
	       M#(k-1) = map (C#k, C#(k-1), (i,j) -> (
			 i0 := (indices C#(k-1))_j;
			 j0 := (indices C#k)_i;
			 if isSubset(i0, j0) 
			 then (
			      l := first toList (set j0 - set i0);
			      (-1)^(position(j0, u -> u == l)) * (f_l)^(-a)
			      )  
			 else 0_W
			 )
		    );   
	       ));     
     -- Step 4.
     -- Compute the homology of the complex
     pInfo(1, "Computing cohomology...");	  
     ret := new HashTable from apply(l, k -> k=> 
	 if k<0 or k>r then W^0
	 else if k==0 then kernel M#0 
	 else if k==r then cokernel M#(r-1)
	 else homology(M#k, M#(k-1))
	 );
     ret
     );

----------------------------------------------------------------------------------------
-- computes the local cohomology H_I(D), where I is an ideal in a polynomial ring
--                                             D is a cyclic D-module
-- two versions: 
-- 1) returns cohomology in every degree  
-- 2) returns cohomology in degrees in the list passed as an argument
--
-- option:  Strategy (sets the way localizations are computed)
----------------------------------------------------------------------

localCohom(      Ideal, Module) := HashTable => o ->   (I,M) -> localCohom(toList (0..numgens I), I, M, o)
localCohom(ZZ,   Ideal, Module) := HashTable => o -> (n,I,M) -> localCohom({n}, I, M, o)
localCohom(List, Ideal, Module) := HashTable => o -> (l,I,M) -> (
     -- Promote I to the Weyl algebra if it is not already there
     if #(ring I).monoid.Options.WeylAlgebra == 0
     then (
	 D := makeWA ring I; -- TODO: what degrees are best for the differentials?
	 I = sub(I, D);
	 M = M ** D;
	 );
     pInfo (1, "localCohom: holonomicity check ...");
     if not isHolonomic M then
     error "expected a holonomic module";
     if o.Strategy == Walther then (
     	  if o.LocStrategy === null then localCohomRegular(l,I,M)
     	  else if o.LocStrategy == OaTaWa then localCohomILOTW(l,I,M)
     	  else if o.LocStrategy == Oaku then localCohomILOaku(l,I,M)
     	  )
     else if o.Strategy == OaTa then localCohomOT(l,I,M)
     else error "unknown option"
     );

----------------------------------------------------------
-- iterated localizations + localize by Oaku 
----------------------------------------------------------
localCohomILOaku = method()
localCohomILOaku(List, Ideal, Module) := (l, I, M) -> (
     -- error checking to be added
     -- I is assumed to be an ideal in WA generated by polynomials
     f := first entries gens I;
     FT := theta -> product(theta, i->f#i);
     r := #f;
     W := ring I;
     subISets := select(subsets toList (0..r-1), s -> s =!= {});
     
     L := new MutableHashTable;
     L#{} = new HashTable from {LocModule => M, Generator => 1_(ring M)}; 
     
     pInfo(1, "Constructing Cech complex...");
     C := new MutableList from toList ((r+1):());
     MM := new MutableList from toList (r:());
     C#0 = directSum { {} => M };
     -- (For this strategy only!) 
     -- keep track of powers of f_i in the localizations
     FPower := new MutableList from toList (r:0);
     scan(toList(1..r), k->(
	  dsArgs := select(subISets, u -> #u == k) / (theta -> (
		    theta' := if k == 1 then {}
		    else first select(1, subISets, u -> #u == k-1 
			 and isSubset(u,theta));
		    i := first toList (set theta - set theta');
		    papa := L#theta'#LocModule;
		    pInfo(666, {"iterated localization: ", theta', " => ", theta});
		    locPapa := computeLocalization(papa, f_i, 
			 {GeneratorPower, annFS}, 
			 new OptionTable from {Strategy => Oaku});
		    pInfo(666, {"Gen power = ", locPapa.GeneratorPower, 
			      " annFS = ", locPapa.annFS});
		    if locPapa.GeneratorPower < FPower#i 
		    then FPower#i = locPapa.GeneratorPower;
		    -- compute the locModule
		    I := locPapa.annFS;
		    subMap := map(W, ring I, vars W | matrix {{(FPower#i)_W}});
		    locIdeal := ideal subMap gens I; 
		    L#theta = new HashTable from {
			 LocModule => W^1/locIdeal, 
			 Generator => L#theta'#Generator * (f_i)^(-FPower#i)
			 };
		    theta => L#theta#LocModule
		    ));
	  C#k = directSum dsArgs;
	            	       	       
	  TempM := map (C#k, C#(k-1), 0);
	  scan(indices C#(k-1), i0->(
		    flagOK := true; 
		    scan(indices C#k, j0->(
			      if flagOK and isSubset(i0, j0)  
			      then (
				   l := first toList (set j0 - set i0);
				   gi := ((L#i0)#Generator);
				   gj := ((L#j0)#Generator);
				   if gj % gi !=0 
				   then ( 
					-- Have to recompute the previous component
					flagOK = false;
					error "Bad luck..."
					--!!! Write it sometime
					);
				   TempM = TempM 
				   + (C#k)_[j0] -- injection from j0-th component
				   * map(L#j0#LocModule, L#i0#LocModule, 
					(-1)^(position(j0, u -> u == l)) 
					* (gj//gi) -- (-1)^(...) id
					)
				   * (C#(k-1))^[i0]; -- projection onto i0-th component 
				   pInfo(666, {"multiplier: ", gj//gi}); 
				   )	   
			      )))); 
	  MM#(k-1) = TempM;
	  ));     
     -- Step 4.
     -- Compute the homology of the complex
     pInfo(1, "Computing cohomology...");	  
     ret := new HashTable from apply(l, k -> k=> 
	 if k<0 or k>r then W^0
	 else if k==0 then kernel MM#0 
	 else if k==r then cokernel MM#(r-1)
	 else homology(MM#k, MM#(k-1))
	 );
     ret
     );

----------------------------------------------------------
-- iterated localizations + localize by OTW 
----------------------------------------------------------
localCohomILOTW = method()
localCohomILOTW(List, Ideal, Module) := (l, I, M) -> (
     -- error checking to be added
     -- I is assumed to be an ideal in WA generated by polynomials
     f := first entries gens I;
     FT := theta -> product(theta, i->f#i);
     r := #f;
     W := ring I;
     subISets := select(subsets toList (0..r-1), s -> s =!= {});
     
     L := new MutableHashTable;
     L#{} = new HashTable from {LocModule => M, Generator => 1_(ring M)}; 
     
     pInfo(1, "Constructing Cech complex...");
     C := new MutableList from toList ((r+1):());
     MM := new MutableList from toList (r:());
     C#0 = directSum { {} => M };
     scan(toList(1..r), k->(
          dsArgs := select(subISets, u -> #u == k) / (theta -> (
		    theta' := if k == 1 then {}
		    else first select(1, subISets, u -> #u == k-1 
			 and isSubset(u,theta));
		    i := first toList (set theta - set theta');
		    papa := L#theta'#LocModule;
		    pInfo(666, {"iterated localization: ", theta', " => ", theta});
		    locPapa := computeLocalization(papa, f_i, 
			 {LocModule, GeneratorPower}, 
			 new OptionTable from {Strategy =>OTW});
		    L#theta = new HashTable from {
			 LocModule => locPapa#LocModule, 
			 Generator => L#theta'#Generator * 
			 (f_i)^(-locPapa.GeneratorPower)
			 };
		    theta => L#theta#LocModule
		    ));
	  C#k = directSum dsArgs;
	       	       	       
	  TempM := map (C#k, C#(k-1), 0);
	  scan(indices C#(k-1), i0->(
		    scan(indices C#k, j0->(
			      if isSubset(i0, j0) 
			      then (
				   l := first toList (set j0 - set i0);
				   gi := ((L#i0)#Generator);
				   gj := ((L#j0)#Generator);
				   if gj % gi !=0 
				   then error ("Bad luck: " | toString gj | 
					" is not divisible by " | toString gi);
				   TempM = TempM 
				   + (C#k)_[j0] -- injection from j0-th component
				   * map(L#j0#LocModule, L#i0#LocModule, 
					(-1)^(position(j0, u -> u == l)) * (gj//gi) 
					-- (-1)^(...) id
					)
				   * (C#(k-1))^[i0]; -- projection onto i0-th component 
				   pInfo(666, {"multiplier: ", gj//gi}); 
				   )	   
			      )))); 
	  MM#(k-1) = TempM;
	  ));     
     -- Step 4.
     -- Compute the homology of the complex
     pInfo(1, "Computing cohomology...");	  
    ret := new HashTable from apply(l, k -> k=> 
	 if k<0 or k>r then W^0
	 else if k==0 then kernel MM#0 
	 else if k==r then cokernel MM#(r-1)
	 else homology(MM#k, MM#(k-1))
	 );
     ret
     );


----------------------------------------------------------------------------------------
-- computes the local cohomology H_I(D), where I is an ideal in a polynomial ring
--                                             D is a cyclic D-module
-- caveat: not smart, does not iterate localizations. 
----------------------------------------------------------------------------------------
localCohomRegular = method()
localCohomRegular(List,Ideal,Module) := (l, I, M) -> (
     -- error checking to be added
     -- I is assumed to be an ideal in WA generated by polynomials
     f := first entries gens I;
     FT := theta -> product(theta, i->f#i);
     r := #f;
     W := ring I;
     subISets := select(subsets toList (0..r-1), s -> s =!= {});
                  
     L := new MutableHashTable;
     bF := new MutableHashTable;
     scan(subISets, theta->(
	       Ftheta := FT(theta);
	       LOC := DlocalizationAll(M, Ftheta);
	       L#theta = new HashTable from {
		    LocModule => LOC.LocModule, 
		    Generator => Power(Ftheta, LOC.GeneratorPower)
		    };	       
	       pInfo(666, {"localization: ", theta, " => ", L#theta});
	       ));
     L#{} = new HashTable from {LocModule => M, Generator => Power(1_(ring M), 0)};
     
     -- Compute the Cech complex 
     pInfo(1, "Constructing Cech complex...");
     C := new MutableList from toList ((r+1):());
     MM := new MutableList from toList (r:());
     C#0 = directSum { {} => M };
     scan(toList(1..r), k->(
	       dsArgs := select(subISets, u -> #u == k) / (theta -> 
		    theta => L#theta#LocModule
		    );
	       C#k = directSum dsArgs;
	       TempM := map (C#k, C#(k-1), 0);
	       scan(indices C#(k-1), i0->(
		    	 scan(indices C#k, j0->(
				   if isSubset(i0, j0) 
			 	   then (
					l := first toList (set j0 - set i0);
					gi := (L#i0)#Generator;
					gj := (L#j0)#Generator;
					if gj#1 > gi#1
					then error "Bad luck!"; 
					-- have to fix that: go back and recalculate 
					-- the localizations
				        TempM = TempM 
					+ (C#k)_[j0] 
					* map(L#j0#LocModule, L#i0#LocModule, 
					     (-1)^(position(j0, u -> u == l)) 
					     * 
					     (gi#0)^(gi#1-gj#1) * (f#l)^(-gj#1))
					* (C#(k-1))^[i0]; 
					)	   
				   )))); 
	       MM#(k-1) = TempM;
	       ));     
     -- Step 4.
     -- Compute the homology of the complex
     pInfo(1, "Computing cohomology...");	  
     ret := new HashTable from apply(l, k -> k=> 
	 if k<0 or k>r then W^0
	 else if k==0 then kernel MM#0 
	 else if k==r then cokernel MM#(r-1)
	 else homology(MM#k, MM#(k-1))
	 );
     ret
     );
---------------------------------------------------------------------------------




-------------------------------------------------------------------------------
-- computes the preimage of a submodule M of the target of f 
-- (more precisely, M and <target f> should have the same ambient module)
------------------------------------------------------------------------------
preimage = method();
preimage (Module, Matrix) := (M, f) -> (
     T := target f;
     g := map(T/M, T);
     kernel (g*f)
     );

---------------------------------------------------------------------------
-- prunes every element of the local cohomology hashtable 
---------------------------------------------------------------------------
pruneLocalCohom = method()
pruneLocalCohom(HashTable) := HashTable => h -> (
     new HashTable from apply(keys h, i->(
     	       i => Dprune relations prune h#i
     	       ))
     )

--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
-- computes local cohomology modules using algorithm of Oaku-Takayama
-- for a holonomic D-module
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------

localCohomOT = method()
localCohomOT(Ideal, Ideal) := (I, J) -> (
     if not J.?quotient then J.quotient = (ring J)^1/J;
     localCohomOT(I, J.quotient)
     )
localCohomOT(Ideal, Module) := (I, M) -> computeLocalCohomOT(I, M, 0, numgens I)

localCohomOT(List, Ideal, Module) := (l, I, M) -> (
     locOut := computeLocalCohomOT(I, M, min l, max l);
     locOut = hashTable apply(keys locOut, 
	  i -> if member(i, l) then i => locOut#i);
     locOut)

computeLocalCohomOT = (I, M, n0, n1) -> (
     -- error checking to be added
     -- 1. make sure I is contained in coordinate part of Weyl alg
          
     -- preprocessing
     m := gens I;
     r := rank source gens M;
     d := numgens source m;
     W := ring M;
     createDpairs(W);
     nW := numgens W;
     n := #W.dpairVars#0;
     N := presentation M;
     -- create the auxiliary D_(n+d) ring
     t := symbol t;
     Dt := symbol Dt;
     LCW := (coefficientRing W)(monoid [(entries vars W)#0,
	  t_0 .. t_(d-1), Dt_0 .. Dt_(d-1),
	  WeylAlgebra => join(W.monoid.Options.WeylAlgebra,
	       apply(toList(0..d-1), i->(t_i=>Dt_i)) )]);
     scan(d, i -> (t_i = LCW_(t_i); Dt_i = LCW_(Dt_i)));
     nLCW := numgens LCW;
     WtoLCW := map(LCW, W, (vars LCW)_{0..nW-1});
     LCWtoW := map(W, LCW, (vars W) | matrix{toList(2*d:0_W)});
     -- weight vector for restriction to t_1 = ... = t_d = 0
     w := join( toList(n:0), toList(d:1) );
     -- create KN such that (D_{n+d}^r/KN) \cong 
     -- ( R_f[s_1..s_d]f_1^{s_1}...f_d^{s_d} \os D_n^r/N ) ??
     F := LCW^r;
     Lm := WtoLCW m;
     twistN := {};
     i := 0;
     while (i < d) do (
	  j := 0;
	  while (j < numgens F) do (
	       twistN = append( twistN, (t_i - Lm_(0,i))*(gens F)_j );
	       j = j+1; );
	  i = i+1; );
     LN1 := transpose matrix apply(twistN, i -> entries i);	  
     -- create the twistings that will be applied to N
     twistList := apply( toList(0..nLCW-1), 
	  i -> LCW_i + sum(d, j -> (LCW_i * Lm_(0,j) - 
		    Lm_(0,j) * LCW_i) * Dt_j) );
     twistMap :=  map(LCW, LCW, matrix{twistList});
     -- twist generators of N into generators of KN;
     LN2 := twistMap(WtoLCW N);
     KN := LN1 | LN2;
     KN = map(LCW^(numgens target KN), LCW^(numgens source KN), KN);
     restrictOut := computeRestriction(cokernel KN, w, d-n1-1, d-n0+1, 
	  {HomologyModules, ResToOrigRing}, hashTable{Strategy => Schreyer});
     
     -- stash the homology groups

     locOut := hashTable apply(toList((d-n1)..(d-n0)), i -> (-i+d) => 
	  LCWtoW ** (restrictOut#ResToOrigRing ** restrictOut#HomologyModules#i));
     locOut
     )



TEST///
W = QQ[x, dx, y, dy, z, dz, WeylAlgebra=>{x=>dx, y=>dy, z=>dz}]
I = ideal (x*(y-z), x*y*z)
J = ideal (dx, dy, dz)

time h = localCohom I
time h = localCohom (I, W^1/J, Strategy=>Walther)
time h = localCohom (I, Strategy=>Walther, LocStrategy=>OaTaWa)
time h = localCohom (I, Strategy=>Walther, LocStrategy=>Oaku)
time h = localCohom (I, Strategy=>OaTa)
pruneLocalCohom h
---------------------------------------------------------------
W = QQ[x, dx, y, dy, WeylAlgebra=>{x=>dx, y=>dy}];
I = ideal (x^2+y^2, x*y);
J = ideal (dx, dy);
K = ideal(x^3,y^3);

time h = localCohom I
time h = localCohom (I, W^1/J, Strategy=>Walther)
time h = localCohom (I, Strategy=>Walther, LocStrategy=>OTW)
time h = localCohom (I, Strategy=>Walther, LocStrategy=>Oaku)
time h = localCohom (I, Strategy=>OaTa)
pruneLocalCohom h

m = ideal(x,y);
L = pruneLocalCohom localCohom(m);
assert (rank L#0 == 0);
assert (rank L#1 == 0);
assert (rank L#2 == 1);
Mat = Dprune localCohom(2,I);
assert (sub((minimalPrimes charIdeal Mat)_0,W)==ideal(x,y));
L' = localCohom (m, W^1/K, Strategy=>OaTa);
assert (L'#0==W^1/ideal(x^3,y^3));

---------------------------------------------------------------
x = symbol x; dx = symbol dx; 
W = QQ[x, dx, WeylAlgebra=>{x=>dx}]
I = ideal {x, x^2, x^2+x, x^3, x^4+2*x}
M = W^1 / ideal dx 
time h = localCohom (I, M, Strategy=>Walther, LocStrategy=>Oaku)
time h' = localCohom (ideal x)  
h = pruneLocalCohom h
h' = pruneLocalCohom h'
assert all(keys h, i-> not h'#?i or h'#i == h#i)
///