1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
-- Copyright 1999-2002 by Anton Leykin and Harrison Tsai
--function
local ItimesF
--keys
local howBig
howBig = symbol howBig
local annV
annV = symbol annV
local degGen
degGen = symbol degGen
-------------------------------------------------
-- cancels out the n-th (differential) variable
-------------------------------------------------
cancelOutDX := (h, m, n) -> (
W := ring h;
X := W_m;
l := listForm h;
s := max(l/(u->u#0#n)); -- the max degree of W_n in h
--newH := sum(select(l, u -> u#0#n == s), u->(
-- i := u#0;
-- i := take(i, n)|{0}|drop(i, n+1);
-- u#1*W_i
-- ));
apply(s+1, i->
((-1)^i*binomial(s,i)*X^i, X^(s-i))
)
)
---------------------------------------------------
-- cancels out the m-th (non-differential) variable
---------------------------------------------------
cancelOutX := (h, m, n) ->(
W := ring h;
DX := W_n;
l := listForm h;
s := max(l/(u->u#0#m)); -- the max degree of W_m in h
--newH := sum(select(l, u -> u#0#n == s), u->(
-- i := u#0;
-- i := take(i, n)|{0}|drop(i, n+1);
-- u#1*W_i
-- ));
apply(s+1, i->
((-1)^(s-i)*binomial(s,i)*DX^i, DX^(s-i))
)
)
---------------------------------------------------
-- given presentations of g \in DfD and h \in DgD
-- computes the presentation of h \in DfD
---------------------------------------------------
composePres := (g, h) ->(
flatten apply(g, u->( apply(h, v->(
(v#0 * u#0, u#1 * v#1)
))))
)
---------------------------------------------------
-- evaluates the presentation
---------------------------------------------------
valuePres := (p, h) -> (
sum( p, u -> u#0 * h * u#1 )
)
--------------------------------------------------------------------------
-- obtains the presentation of 1 in the two-sided DhD, where D = A_n(k)
--------------------------------------------------------------------------
getOne := h -> (
-- prep work
W := ring h;
createDpairs W;
dpV := W.dpairVars;
dpI := W.dpairInds;
-- sanity check
if (#(dpI#2) != 0) then
error "expected no central variables in Weyl algebra";
if not isField coefficientRing W then
error "expected field as the coefficient ring";
t := h;
pres := {(1_W,1_W)};
scan(#(dpV#0), i->(
pres1 := cancelOutX(t, dpI#0#i, dpI#1#i);
t = valuePres(pres1, t);
pres2 := cancelOutDX(t, dpI#0#i, dpI#1#i);
t = valuePres(pres2, t);
pres = composePres(composePres(pres, pres1),pres2);
));
l := leadCoefficient t;
apply(pres, u->((1/l)*u#0, u#1))
)
---------------------------------------------------------------------------
-- fed with <presentation>, returns the list of nonzero (mod I) right parts
---------------------------------------------------------------------------
getUseful := (pres, I) -> (
select( apply(pres, u->u#1%I), u->u!=0)
)
---------------------------------------------------------------------------
-- computes ":" ideal
---------------------------------------------------------------------------
semicolonIdealIdeal := (I,J) -> (
error "is not implemented yet"
)
semicolonMatrixMatrix := (M, v) -> (
R := ring M;
if R =!= ring v or rank target M != rank target v
then error "expected equal targets";
ideal mingens ideal ker map(cokernel M , source v, v)
)
semicolonIdealRE := (I,f) -> (
R := ring I;
semicolonMatrixMatrix(gens I, matrix{{f}})
)
------------------------------------------------------------------
-- multiplies an Ideal by a RingElement
-----------------------------------------------------------------
ItimesF = method()
ItimesF(Ideal, RingElement) := (I,f) -> (
g := first entries gens I;
g = g/(u->u*f);
ideal g
)
----------------------------------------------------------------------------
-- makes a cyclic module out of a module presented as a cokernel of a matrix
----------------------------------------------------------------------------
tempV := local tempV
makeCyclic = method()
--makeCyclic Module := M -> makeCyclic relations M
makeCyclic Matrix := HashTable => M -> (
F := target M;
K := image M;
n := numgens F;
R := ring F;
E := apply(toList(0..(n-1)), i ->
new HashTable from {
tempV => (t := matrix( (toList(i : {0_R}))
| {{1_R}} | (toList((n-i-1):{0_R})) )), --(0,...,1,...,0)
annV => (ta := semicolonMatrixMatrix(M, t)),
howBig => numgens ta,
degGen => min apply(first entries gens ta, u->first degree u)
}
);
pInfo(666, {"E=",E});
E = select(E, e->e#annV != R);
pInfo(666, {"E=",E});
g := matrix( toList(n:{0_R}) ); --start with(0,0,...,0)
Ag := ideal 1_R; -- annihilator of g
while #E > 0 do (
-- pick the "nicest" E_i
minDeg := min apply(E,u->u#degGen);
i := position(E, u->u#degGen == minDeg);
h := (E#i)#tempV;
Ah := (E#i)#annV;
E = drop(E, {i,i});
flg := true;
while flg
do ( -- while h is not in Dg
pInfo(666, {"g = ", g, " h = ", h, " h%g = ", h%g});
-- pick an element in Ah of the lowest degree
a := first select(1, first entries mingens Ah,
u->first degree u == minDeg);
pInfo(3, {"picked ", a, " in Ah"});
unitPres := getOne a;
rr := apply(unitPres, u -> u#1);
r := select(1, rr, u -> Ag + ideal (a*u) == R);
if #r!=0
then flg = false
else r = select(1, rr, u -> not isSubset(ideal (a*u), Ag));
r = first r;
-- D(h+rg) > Dg
g = h + r*g;
Ag = semicolonMatrixMatrix(M, g); --ann(g)
);
);
new HashTable from {Generator=>g, AnnG=>ideal mingens Ag}
)
TEST ///
Dtrace 1
pInfo(1, "testing makeCyclic...")
-------------------------
-- R^3
-------------------------
x = symbol x; dx = symbol dx;
R = QQ[x, dx, WeylAlgebra => {x=>dx}]
M = matrix {{dx, 0, 0}, {0, dx, 0}, {0, 0, dx}}
h = makeCyclic M
assert (entries h.Generator == entries matrix{{x^2},{x},{1}});
assert (listForm bFunction(h.AnnG,{1}) == listForm bFunction(cokernel M, {1}, {0,1,2}))
assert (holonomicRank h.AnnG == holonomicRank cokernel M)
assert (singLocus h.AnnG == singLocus cokernel M)
-------------------------
-- R^1 / dx^3
-------------------------
use R
M = presentation image map( R^1/ideal dx^3, R^3, matrix{{1, x, x^2}} )
h = makeCyclic M
b1 = bFunction(ideal dx^3, {1})
b2 = bFunction(cokernel M, {1}, {0,-1,-2})
assert (listForm b1 == listForm b2)
b2 = bFunction(cokernel M, {1}, {2,1,0})
b3 = bFunction(h.AnnG, {1})
assert (listForm b3 == listForm b2)
///
|