1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
|
newPackage(
"EagonResolution",
Version => "1.0",
Date => "September 23, 2020",
Authors => {{Name => "David Eisenbud",
Email => "de@msri.org",
HomePage => "http://www.msri.org/~de"},
{Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://pi.math.cornell.edu/~mike"}},
Headline => "Compute the Eagon Resolution of the residue field",
Keywords => {"Commutative Algebra"},
DebuggingMode => false
)
export {
"eagon",
"eagonResolution", -- use res EagonData as a synonym
"golodBetti", -- the betti table "as if" the module is Golod.
"verticalStrand", --make a vertical strand of the Eagon complex
"horizontalStrand", --make a vertical strand of the Eagon complex
"eagonBeta", -- the maps responsible for any non-minimality.
"picture", -- compressed display of labeled matrices; various options
"mapComponent",
--Symbols:
"EagonData", -- the result of the eagon computation
"Transpose", -- option for picture
"DisplayBlocks", --option for picture
"Display", -- option for picture and for eagonBeta
"CompressBeta" --option for eagon
}
protect EagonLength
--EagonData--
EagonData = new Type of HashTable
net EagonData := E -> net ("EagonData in <ring>.cache computed to length "| toString(E.EagonLength))
--verticalStrand--
verticalStrand = method()
verticalStrand (EagonData, ZZ) := ChainComplex => (E,n) -> (
Kemax :=select(keys E, k -> (k_0 === "dVert" and E#k !=0));
maxn := max apply(Kemax, k->k_1);
if n>maxn then error "That vertical strand wasn't defined";
Ke := select(keys E, k -> (k_0 === 0 and k_1 === n and E#k !=0));
b := max (Ke/(k-> k_2));
chainComplex(apply(b, i-> E#{"dVert", n,i+1})))
--horizontalStrand--
horizontalStrand = method()
horizontalStrand (EagonData, ZZ) := ChainComplex => (E,i) -> (
Kemax :=select(keys E, k -> (k_0 === "dHor" and E#k !=0));
maxi := max apply(Kemax, k->k_2);
if i>maxi then error "That horizontal strand wasn't defined";
Ke := select(keys E, k -> (k_0 === 0 and k_2 === i and E#k !=0));
b := max (Ke/(k-> k_1));
chainComplex(apply(b-1, n -> E#{"dHor", n+1,i})))
///
restart
loadPackage("EagonResolution", Reload => true)
///
--tensoring a list of modules together:
tensorL = (R,L) -> (if L === {} then return R^1;
if #L === 1 then return L_0;
L_0**tensorL(R,drop(L,1)))
--golodBetti--
golodBetti = method()
golodBetti (ChainComplex, ChainComplex, ZZ) := BettiTally => (F,G,b) ->(
--F,G finite free complexes (resolutions) over a ring S.
--Compute the Betti table of what should be the Eagon resolution of
--the module resolved by G over the ring resolved by F
--up to step b.
symbs := apply(b+1, n->eagonSymbols(n,0));
mods := apply(symbs, s ->
directSum apply(#s,
i-> G_(s_i_0)**tensorL(ring F, apply(s_i_1, j->F_(j)))));
betti chainComplex apply(b,i->map(mods_i,mods_(i+1),0))
)
golodBetti (Module,ZZ) := BettiTally => (M,b) ->(
--case where M is a module over a factor ring R = S/I,
--MS is the same module over S
--F = res I
--K = res MS
R := ring M;
p := presentation R;
S := ring p;
phi1 := substitute(presentation M, S);
phi := phi1 | target phi1 ** p;
MS := prune coker phi;
K := res MS;
F := res coker p;
golodBetti(F,K,b)
)
///
restart
loadPackage("EagonResolution", Reload =>true)
S = ZZ/101[x,y,z]
R = S/ideal(x^2,y^3)
M = coker random(R^2, R^{-2,-2,-3})
b = 5
golodBetti(M,5)
///
homologyCover = method()
homologyCover(ChainComplex,ZZ) := Matrix => (C,i) ->(
--map from a free module to C_i giving a basis of HH_i C.
--Note that HH_i C must be of finite length, or there's an error.
B := basis HH_i C;
(gens target B)*matrix B)
homologyCover(ZZ, ChainComplex) := List => (b,C) ->
apply(b, i-> homologyCover(C,i))
homologyCover(ChainComplex) := List => C -> homologyCover(1+length C, C)
homologyIsomorphism = method()
homologyIsomorphism(Module, ChainComplex, ZZ) := Matrix => (M,C,i) ->(
--If M is isomorphic to HH_i C then the matrix returned is a map
-- target presentation M --> C_i
--inducing the isomorphism.
--else the function throws and error.
Hi := HH_i C;
H := prune Hi;
p := H.cache.pruningMap; -- iso from H to HH_i C
f := degreeZeroSurjection(M,H);
if f === null then error "non-iso modules that should be iso";
-- g := degreeZeroSurjection(H, M); -- this is just a check; get rid of it eventually
map(C_i,HH_i C, gens Hi)*p*f
)
labeler = (L,F) -> directSum(1:(L=>F));
tensorWithComponents = method()
tensorWithComponents(Module, Module, Function) := Module => (F, G, combineIndices) -> (
if F == 0 or G == 0 then return (ring F)^0;
(compsF, indicesF) := componentsAndIndices F;
(compsG, indicesG) := componentsAndIndices G;
comps := flatten for f from 0 to #compsF-1 list (
for g from 0 to #compsG-1 list (
newindex := if indicesF#f === null or indicesG#g === null
then null else combineIndices(indicesF#f, indicesG#g);
newindex => directSum(1:(newindex=>(compsF#f ** compsG#g)))
)
);
if #comps == 0 then (ring F)^0 else directSum comps
)
tensorWithComponents(Module, Module) := Module => (F, G) -> tensorWithComponents(F, G, (a,b) -> a|b)
tensorWithComponents(Matrix, Module, Function) := Matrix => (phi, G, combineIndices) -> (
src := tensorWithComponents(source phi, G, combineIndices);
tar := tensorWithComponents(target phi, G, combineIndices);
map(tar,src,phi**G))
eTensor = method()
eTensor(Module,Module) := Module => (F, G) -> tensorWithComponents(F, G, (a,b) ->(a#0+b#0,a#1|b#1))
eTensor(Matrix,Module) := Matrix => (phi,G) -> tensorWithComponents(phi, G, (a,b) ->(a#0+b#0,a#1|b#1))
trimWithLabel = method()
trimWithLabel ZZ := ZZ => n -> n
trimWithLabel Symbol := Symbol => s -> s
trimWithLabel Module := Module => M ->(
if M == 0 then return (ring M)^0;
ci := componentsAndIndices M;
pci := positions(ci_0,M -> M!=0);
if #pci ===0 then return (ring M)^0;
if #pci === 1 then
labeler(ci_1_pci_0, ci_0_pci_0)
else
directSum apply(pci, i->labeler(ci_1_i,ci_0_i))
)
trimWithLabel Matrix := Matrix => f ->(
S := source f;
T := target f;
S':= trimWithLabel S;
T':= trimWithLabel T;
map(T',T,id_T')*f*map(S,S',id_S)
)
trimWithLabel HashTable := HashTable => E -> hashTable apply(keys E, k-> (k,trimWithLabel E#k))
trimWithLabel ChainComplex := ChainComplex => F -> chainComplex apply(
length F, i-> trimWithLabel(F.dd_(i+1))
)
///
restart
loadPackage("EagonResolution", Reload =>true)
S = ZZ/101[x,y,z]
R = S/ideal"x2,y2,z2"
E = eagon(R,5)
E
eagonResolution E
resolution E
res E
eagon(R,4)
eagon(R,-1)
///
--eagon--
eagon = method(Options => {CompressBeta => true, Verbose => false})
eagon(Ring, ZZ) := EagonData => o -> (R,b) ->(
--compute the Eagon configuration up to and including column b; and thus
--also the "Eagon Resolution"
--Y^b_0 \to...\to Y^1_0 \to Y^0_0.
--Let X_i be the free module R**H_i(K), where K is the Koszul complex on the variables of R.
--We count X_i as having homological degree i+1.
--The module Y^n_i = Eagon#{0,n,i} is described in Gulliksen-Levin as:
--Y^0 = koszul vars R
--Y^(n+1)_0 = Y^n_1; and
--for i>0, Y^(n+1)_i = Y^n_(i+1) ++ Y^n_0**X_i
--Note that Y^n_i == 0 for i>1+length koszul vars R, so we will carry computations out to that length.
--Each Y^n is a complex whose i-th homology is H_i(Y^n) = H_0(Y^n)^0**X_i (proved in Gulliksen-Levin).
--assuming that the differential of Y^n and the maps Y^n --> Y^(n-1) are known
--To construct the differential of Y^(n+1) and the map Y^(n+1) \to Y^n,
--this isomorphism must be made explicit.
if b == -1 then (
remove(R.cache,symbol EagonData);
<<"EagonData removed from "<<R<<".cache"<<endl;
return null);
if R.cache.?EagonData and R.cache.EagonData.EagonLength >= b then return R.cache.EagonData;
Eagon := new MutableHashTable;
g := numgens R;
K0 := koszul vars R;
Eagon#"numgens" = g;
--now label the modules in the Koszul complex
K := chainComplex(for i from 1 to length K0 list
map(labeler((i-1,{}), K0_(i-1)),
labeler((i,{}), K0_(i)),
K0.dd_i));
homologyCover' := (K,i) -> (
--Returns the map from X(i) to K_i
phi := homologyCover(K,i);
Xi := labeler((0,{i}),source phi);
map(K_i, Xi, phi)
);
ebasis := memoize homologyCover';
X := i -> if i<=g and (s := source ebasis(K,i))!=0 then
labeler((0,{i}),s) else R^0; -- X(i) is the X_i of Gulliksen-Levin.
--we made it a function so that it would be available for all integers i.
pd := 0; while X(pd)!=0 do pd = pd+1; pd = pd-1; -- max i such that X(i)!=0
Eagon#"pd" = pd;
--first make the free modules Y^n_i = Eagon#{0,n,i}.
--The maps Y^(n+1)_j \to Y^n_j will be Eagon#{"dHor",n+1,j}
west := "dHor";
--The differential verticaldiff of Y^n is the sum of maps eagon#{"dVert",n,i} and eagon#{"NW",n,i}.
north := "dVert";
eagonBeta := "eagonBeta";
--Make the free modules Eagon#{0,n,i}.
--two special cases:
for i from 0 to g+1 do (
Eagon#{0,0,i} = K_i;-- print Eagon#{0,0,i}.cache.components);
for n from 0 to b do(
Eagon#{0,n,g+2} = directSum(1:R^0);-- R^0++R^0;
));
-- cases:
for n from 1 to b do (
for i from 0 to g+1 do(
if i == 0 then (
Eagon#{0,n,i} = Eagon#{0,n-1,1} ;
)
else (
Eagon#{0,n,i} = Eagon#{0,n-1,i+1}++eTensor(Eagon#{0,n-1,0},X(i));
)
));
--Now make the northward maps; the maps of the complexes Y^n = E#{0,n,*}
--Note that the highest term in Y^n is in place b-n, so the top interesting homology is H_(b-n-1)
--initialize:
for i from 0 to g+2 do Eagon#{north,0,i} = K.dd_i;
--Make the maps for n=1:
--three special cases:
Eagon#{north, 1, g+2} = map(Eagon#{0,1,g+1}, Eagon#{0,1,g+2},0);
Eagon#{west,1,0} = Eagon#{north, 0,1};
Eagon#{north,1,1} = (Eagon#{north,0,2})*(Eagon#{0,1,1})^[0] +
ebasis(K,1)*(Eagon#{0,1,1})^[1];
Eagon#{eagonBeta,1,1} = ebasis(K,1);
Eagon#{west,1,1} = K.dd_2 | ebasis(K,1);
for i from 2 to g+1 do(
Eagon#{north,1,i} = (Eagon#{0,1,i-1})_[0]*
(
(Eagon#{north,0,i+1})*(Eagon#{0,1,i})^[0] +
ebasis(K,i)*(Eagon#{0,1,i})^[1]
);
Eagon#{eagonBeta,1,i} = ebasis(K,i);
Eagon#{west,1,i} = K.dd_(i+1) | ebasis(K,i);
);
--now the induction, assuming that the Y^m have been defined for m<n:
for n from 2 to b do(
Eagon#{north, n, g+2} = map(Eagon#{0,n,g+1}, Eagon#{0,n,g+2},0);
Eagon#{west,n,0} = Eagon#{north, n-1,1};
Eagon#{eagonBeta,n,0} = Eagon#{eagonBeta, n-1,1};
for i from 1 to g+1 do(
--for eagonBeta:
toLift := -(if #components Eagon#{0,n-2,i} ===1 then
id_(Eagon#{0,n-2,i}) else Eagon#{0,n-2,i}_[0])*
Eagon#{eagonBeta,n-1,i}*
eTensor(Eagon#{north, n-2,1},X(i));
M := Eagon#{north,n-2,i+1};
--idea: when o.CompresBeta == true, then
--try the initial segments of blocks until lifting becomes possible; then
--set M = that lifting. We
--know that a lifting is eventually possible.
ind := indices flattenBlocks source M;
if o.CompressBeta == true and ind =!=null then(
numInd := #ind;
if numInd != 0 then scan(numInd, p-> (
M' := extractBlocks(M,toList(0..p));
if toLift % M' == 0 then(
(M = M';
if o.Verbose == true then
<<"Used "<<p+1<<" of "<<numInd<<" blocks of eagonBeta "<<(n,i)<<endl;
break)))));
Eagon#{eagonBeta,n,i} = toLift//M;
Eagon#{west,n,i} = Eagon#{0,n-1,i}_[0]*Eagon#{eagonBeta,n,i}*(Eagon#{0,n,i})^[1]+
Eagon#{0,n-1,i}_[1]* (Eagon#{west,n-1,0}**X(i)) *(Eagon#{0,n,i})^[1]+
(if Eagon#?{west,n-1,i+1} then
Eagon#{0,n-1,i}_[0]*Eagon#{west,n-1,i+1}*Eagon#{0,n,i}^[0]
else 0);
if i == 1 then
Eagon#{north,n,i} = -- special case because Y^n_0 is not a tensor product with Y^(n-1)_0
(
(Eagon#{north,n-1,i+1})*((Eagon#{0,n,i})^[0])+
Eagon#{0,n-1,i}_[0]*Eagon#{eagonBeta,n,i}*(Eagon#{0,n,i})^[1]+
Eagon#{0,n-1,i}_[1]*(Eagon#{north, n-2,1}**X(i))*(Eagon#{0,n,i}^[1])
)
else
Eagon#{north,n,i} =
Eagon#{0,n,i-1}_[0]*
(
(Eagon#{north,n-1,i+1})*((Eagon#{0,n,i})^[0])+
Eagon#{0,n-1,i}_[0]*Eagon#{eagonBeta,n,i}*(Eagon#{0,n,i})^[1]+
Eagon#{0,n-1,i}_[1]*(Eagon#{north, n-2,1}**X(i))*(Eagon#{0,n,i}^[1])
);
));
H := trimWithLabel hashTable prepend((symbol EagonLength, b), pairs Eagon);
E :=new EagonData from H;
R.cache.EagonData = E;
E
)
--eagonBeta--
eagonBeta = method(Options => {Display => "picture", Verbose => false})
--There are no maps eagonBeta(E,0) or eagonBeta(E,1); the display starts with eagonBeta(E,2).
eagonBeta(EagonData, ZZ) := o -> (E,n) -> (
if o.Display == "picture" then
picture(E#{"eagonBeta",n,0},Verbose => o.Verbose)
else if o.Display == "DisplayBlocks" then
displayBlocks E#{"eagonBeta",n,0}
else
E#{"eagonBeta",n,0}
)
eagonBeta EagonData := List => o-> E -> (
b := max apply(select(keys E, k-> k_0 === 0 and k_2 === 0), k->k_1);
netList apply(b-1, n -> eagonBeta(E,n+2,Display => o.Display, Verbose => o.Verbose))
)
extractBlocks = method()
extractBlocks(Matrix, List) := Matrix => (phi, L) -> (
--the map map(target phi, source phi, phi_[L]*(source phi)^[L], where L is a list
--of integers representing blocks in source phi.
phi1 := flattenBlocks phi;
src := source phi1;
ind := indices src;
sum(L, i->phi1_[ind_i]*src^[ind_i])
)
--eagonResolution--
eagonResolution = method()
eagonResolution EagonData := ChainComplex => E ->(
b := max apply( select(keys E, k-> k_0 === 0 and k_2 === 0), k->k_1);
chainComplex(apply(b,n->E#{"dHor",n+1,0}))
)
eagonResolution(Ring,ZZ) := ChainComplex => (R,b) ->(
eagonResolution eagon(R,b)
)
resolution EagonData := opts->E -> eagonResolution E
--res--
--resolution--
///
restart
loadPackage("EagonResolution", Reload=>true)
S = ZZ/101[a,b,c]
I = ideal"a3,b3,c3"
R = S/I
E = eagon(R,6)
eagonResolution E -- works
--resolution EagonData := E -> eagonResolution E
resolution E -- fails
eagonResolution E
res R.cache.EagonData
eagonResolution E
///
eagonSymbols = method()
eagonSymbols(ZZ,ZZ) := List => (n,i) ->(
--symbol of the module Y^n_i, as a list of pairs, defined inductively from n-1,i+1 and n-1,0
--assumes large number of vars and pd.
if n === 0 then return {(i,{})};
if i === 0 then return eagonSymbols(n-1,1);
e' := eagonSymbols (n-1,0);
e'1 := apply (e', L -> L_1|{i});
eagonSymbols(n-1,i+1)|apply (#e', j-> (e'_j_0,e'1_j))
)
componentsAndIndices = (F) -> (
if not F.cache.?components then (
-- F has no components
({F}, {null})
)
else if #F.cache.components == 1 then (
if F.cache.?indices then
({F}, F.cache.indices)
else
({F}, {null})
)
else (
a := for f in F.cache.components list componentsAndIndices f;
(flatten(a/first), flatten(a/last))
)
)
flattenBlocks = method()
flattenBlocks Module := (F) -> (
if not isFreeModule F then error "expected a free module";
(comps, inds) := componentsAndIndices F;
compsLabelled := for i from 0 to #comps-1 list (
inds#i => comps#i
);
directSum compsLabelled
)
flattenBlocks Matrix := (M) -> (
F := flattenBlocks target M;
G := flattenBlocks source M;
map(F,G,matrix M)
)
--displayBlocks--
displayBlocks = method()
displayBlocks Matrix := (M1) -> (
M := flattenBlocks M1;
src := select(indices source M, i-> i =!= null);
tar := select(indices target M, i-> i =!= null);
netList (prepend(
prepend("", src),
for t in tar list prepend(t, for s in src list (
mts := M^[t]_[s];
h := if mts == 0 then "." else if (numrows mts == numcols mts and mts == 1) then "1" else net mts
))
), Alignment=>Center)
)
displayBlocks ChainComplex := List => C -> apply(length C, i -> displayBlocks(C.dd_(i+1)))
displayBlocks EagonData := List => E -> displayBlocks eagonResolution E
--pictureList--
pictureList = method(Options => {Verbose => false, Display => "picture", Transpose => false})
pictureList Matrix := o -> (M1) -> (
M := flattenBlocks M1;
src := indices source M;
tar := indices target M;
kkk := ring M/(ideal gens ring M);
L := prepend(
prepend("", src),
for t in tar list prepend(t, for s in src list (
mts := M^[t]_[s];
nums := toString(numrows mts,numcols mts);
cont := ideal M^[t]_[s];
if o.Verbose == false then (
h := if mts == 0 then
"."
else if (numrows mts == numcols mts and mts == 1) then
"id"
else if cont == ideal(1_(ring mts)) then
toString numrows M^[t]_[s]|","|toString rank(kkk**M^[t]_[s])
else "*"
)
else (
h = if mts == 0 then
nums|" ."
else if (numrows mts == numcols mts and mts == 1) then
nums|" id"
else if cont == ideal(1_(ring mts)) then
nums|","|toString rank(kkk**M^[t]_[s])
else "*"
)
)));
if o.Transpose then transpose L else L
)
pictureList ChainComplex := List => o -> C -> apply(length C, i-> pictureList(C.dd_(i+1), o))
pictureList EagonData := List => o -> E -> pictureList (eagonResolution E, o)
--picture--
picture = method(Options => options pictureList)
picture Matrix := o -> (M1) -> (
if o.Display === "DisplayBlocks" then return displayBlocks M1;
netList (pictureList(M1,o), Alignment => Center)
)
picture ChainComplex := Net => o -> C -> netList apply(length C, i-> picture(C.dd_(i+1), o))
picture EagonData := Net => o -> E -> picture (eagonResolution E, o)
--mapComponent--
mapComponent = method()
mapComponent(Matrix, Sequence, Sequence) := Matrix => (M,tar,src) -> (
--Matrix should be one with labeled components, such as produced by
--E = eagon(R,n)
--M = E#{"dVert",4,1}
--or
--M = (eagonResolution(R,n)).dd_4
M1 := flattenBlocks M;
--use "member" and "componentsAndIndices" to check reasonableness? or try evaluating and catch error.
try (M2 := M1^[tar]_[src]) then
M2
else (
<<endl<<"*** bad source or target symbol; use `picture M1' to check ***"<<endl<<endl;
error()
)
)
degreeZeroSurjection = method()
degreeZeroSurjection(Module,Module) := Matrix => (A,B) -> ( -- null if no surjection
--creates a random degree 0 map f:A --> B and tests surjectivity. returns the map if true, else null.
A' := prune A;
pruningMapA := A'.cache.pruningMap; --from A' to A
B' := prune B;
pruningMapB := B'.cache.pruningMap;
H := Hom(A',B');
B0 := basis(0,H); -- this seems to be total degree 0 in case of degreeLength>1
f := homomorphism(B0*random(source B0, (ring B0)^1));
t := coker f == 0;
if t then pruningMapB * f * (pruningMapA)^-1 else null
)
beginDocumentation()
-*
restart
debug loadPackage("EagonResolution", Reload => true)
uninstallPackage "EagonResolution"
restart
installPackage "EagonResolution"
check "EagonResolution"
viewHelp EagonResolution
*-
--docEagonResolution
doc ///
Key
EagonResolution
Headline
Construct the Eagon double complex, which contains a resolution of the residue field
Description
Text
This package implements Eagon's algorithm for producing a not-necessarily minimal resolution of
the residue field of a ring R = S/I where S is a polynomial ring and I is an ideal.
The resolution constructed is minimal if and only if R is Golod. The resolution
constructed is sometimes called the Golod or Shamash or Eagon resolution.
This resolution was described, in the special case where it is minimal, by
E.S. Golod: Homology of some local rings, Uspekhi Mat. Nauk 33 (1978), no. 5(203), 177–178.
A general construction was described by Jack Shamash:
The Poincaré series of a local ring II, J. Algebra 17 (1971), 1–18
and, perhaps around the same time, by Jack Eagon.
Eagon's construction, superficially different than Shamash'
was not published by him, but is described in Ch. 4 of the notes
by Gulliksen and Levin: Homology of local rings,
Queen's Paper in Pure and Applied Mathematics, No. 20 Queen's University, Kingston, Ont. 1969.
To get a glimpse of the construction, consider the first steps. Let
K be the Koszul complex of S, which is the minimal S-free resolution
of the residue field k. If numgens S = n, this begins
K_1 = S^n -> K_0 = S -> k.
Let F be the minimal S-free resolution of R.
by the right-exactness of the tensor product, the complex
R**K_1 -> R**K_0 -> k
is a presentation of k, and of course R**K_2 maps to the kernel of
R**K_1 -> R**K_0. But there are new elements of the kernel, obtained by
writing the generators of I, which correspond to the generators of F_1,
in terms of the generators of the maximal ideal. Thus we must add a map
R**F_1 -> R**K_1, and it is easy to show that the resulting complex
R**F_1 ++ R**K_2 -> R**K_1 -> R**K_0 -> k
is exact. There are three important points to note:
1) F_0 does not occur
2) F_1 occurs in homological degree 2
3) There is a map F_1 -> K_1 that must be introduced and that does not
come from either the complex F nor the complex K.
Eagon showed how this complex can be continued to a resolution.
The underlying graded
module of the complex is K ** T(F'), where F' is the complex F, shifted by
1 in homological degree so that F_i is in homological degree i+1, and truncated
by dropping F_0; and T(F') denotes the tensor algebra on the graded module F'.
The differentials of the complex come from the differentials in the Koszul
complex and various maps identifying the homology, at successive stages of the
construction, with tensor products of modules already constructed.
These are also the ingredients of
the "Massey products" from topology, used by Golod to construct the complex
in the special case where there are ``trivial Massey products'', and the resolution is therefore minimal.
The command @TO eagon@ produces a type of hashTable called an @TO EagonData@, defined in the package.
It contains all the data produced in
Eagon's construction of the resolution: a double complex Y^n_i, and some internal
maps. The vertical differential is called dVert: Y^n_i -> Y^n_{i+1} and the horizontal
differential is dHor: Y^n_i -> Y^{n-1}_i.
Thus for example if $R$ is a factor ring of a polynomial ring S, then
E = eagon(R,5)
@TO eagonResolution@ E
or simply
res EE
produces the first 5 steps of a
(not necessarily minimal) R-free resolution of the residue field of R. The function picture gives
alternate ways of viewing the innards of the resolution.
Example
S = ZZ/101[a,b,c]
I = ideal(a,b,c)*ideal(b,c)
R = S/I
E = eagon(R,5)
F = eagonResolution E
assert(F == res E)
Text
As stated above, F = K\otimes T(F'), and one can see the maps between
each pair of summands. We label the summand
K_i**F_{j_1}**..**F_{j_m} with the symbol (i,\{j_1,..,j_m\}), and we can write out
the differentials in block form with the function picture,
with the option Display => "DisplayBlocks", including the labels:
Example
F.dd_3
picture(F.dd_3, Display => "DisplayBlocks")
Text
Since the matrices can be very large, it is sometimes better to know just whether
a given block is zero or not, and this can be obtained with the function @TO picture@,
with the default option Display => "picture".
Example
picture F.dd_3
picture (F, Verbose => true)
picture (F, Verbose => true, Transpose => true)
SeeAlso
eagon
picture
eagonResolution
DisplayBlocks
Transpose
///
--docEagonData
doc ///
Key
EagonData
Headline
HashTable storing output of eagon
Usage
E = eagon(R,b)
Inputs
R:Ring
b:ZZ
Outputs
E:EagonData
Description
Text
The command E = eagon(R,b) puts the EagonData E in R.cache so that E== R.cache.EagonData,
and causes the message "EagonData in <ring>.cache computed to length b"
Example
R = ZZ/101[x,y]/ideal"x2,xy,y2"
E = eagon(R,3)
E === R.cache.EagonData
SeeAlso
eagon
///
--doceagon
doc///
Key
eagon
(eagon, Ring, ZZ)
[eagon,CompressBeta]
[eagon,Verbose]
Headline
compute the Eagon double complex
Usage
E = eagon(R,b)
Inputs
R:Ring
b:ZZ
how far to carry the computation; -1 means "delete EagonData"
Outputs
E:EagonData
Description
Text
eagon(R,b) computes the first b columns of the Eagon double complex Y^*_* of R,
and caches them in a HashTable of class EagonData in of R.cache.EagonData.
(The command eagon(R,-1) removes this.)
Following
Gulliksen-Levin we think of Y^n_* as the n-th column, and Y^*_i as the i-th row. The columns
Y^n are not acyclic.
The i-th row is a resolution of the i-th module of boundaries in the Koszul complex K
of the variables of R; in particular, the
"Eagon Resolution" is the 0-th row,
Y^b_0 \to...\to Y^1_0 \to Y^0_0.
Let X_i be the free module R**H_i(K), which is also the R**F_i, where F is a minimal free
resolution of R as a module over the polynomial ring on the same set of variables.
We count X_i as having homological degree i+1.
With this convention, Y^*_0 has the form K\otimes T(F'), where T denotes the tensor algebra
and F' is the F_1++F_2++... .
The module Y^n_i = Eagon#{0,n,i} is described in Gulliksen-Levin as:
Y^0 = koszul vars R
Y^{n+1}_0 = Y^n_1; and
for i>0, Y^{n+1}_i = Y^n_{i+1} ++ Y^n_0**X_i
Note that Y^n_i == 0 for i>1+length koszul vars R - n,
The i-th homology of Y^n_* is H_i(Y^n) = H_0(Y^n_*)**X_i (proved in Gulliksen-Levin). Part of the
inductive construction will be a map inducing this isomorphism
alpha^n_i = eagonBeta^n_i + dHor^n_0**1: Y^n_0**X_i \to Y^{n-1}_{i+1} ++ Y^{n-1}_0**X_i = Y^n
Assume that the differential of Y^n and the maps dVert^n and alpha^n are known. We take
dHor^{n+1}_0: Y^{n+1}_0 = Y^n_1 -> Y^n_0 to be dVert^n_1.
The remaining horizontal differentials dHor^{n+1}_i: Y^{n+1} \to Y^n have source and target as follows:
Y^{n+1}_i = Y^n_{i+1} ++ Y^n_0**X_i -> Y^n_i = Y^{n-1}_{i+1} ++ Y^{n-1}_0**X_i.
We take dHor^{n+1}_i to be the sum of two maps:
dVert^n_{i+1} Y^n_{i+1} -> Y^n_i ++ Y^{n-1}_0**X_i.
and alpha^{n+1}_i = eagonBeta^{n+1}_i + dHor^n_0**1: Y^n_0**X_i \to Y^n_i ++ Y^{n-1}_0**X(i).
It remains to define eagonBeta^{n+1}_i; we take this to be
the negative of
a lifting along the map from Y^{n+1}_{i-1} \subset Y^n_i to Y^n_{i-1} of the composite
dVert^{n+1}_{i-1} * (dHor^n_0 ** X_i): Y^n_0**X_i -> Y^{n-1}_0.
Example
S = ZZ/101[a,b,c]
I = ideal(a,b)*ideal"a3,b3,c3"
R = S/I
needsPackage "DGAlgebras"; isGolod R
E = eagon(R,6)
Text
We can see the vertical and horizontal strands, and the eagonBeta maps
Example
verticalStrand(E,3)
horizontalStrand(E,2)
horizontalStrand (E,0)
F = eagonResolution E
eagonBeta E
Text
With the default option CompressBeta => true, only a subset of the components of Y^{n+1}_{i-1} are used.
To see the effect of CompressBeta => true, consider:
Example
eagon(R,-1)
E = eagon(R,6, Verbose =>true)
eagon(R,-1)
En = eagon(R,6,CompressBeta => false)
eagonBeta (E,4), eagonBeta(E,5)
eagonBeta (En,4), eagonBeta(En,5)
Text
There are also ways to investigate the components of dVert, dHor, and eagonBeta; see
@TO picture@, @TO DisplayBlocks@, and @TO mapComponent@.
SeeAlso
verticalStrand
horizontalStrand
///
--doceagonResolution
doc ///
Key
eagonResolution
(eagonResolution, Ring, ZZ)
(eagonResolution, EagonData)
Headline
computes a resolution of the residue field
Usage
F = eagonResolution(R,n)
F = eagonResolution E
Inputs
R:Ring
factor ring of a polynomial ring
n:ZZ
number of maps to compute
E:EagonData
computed by eagon(R,n)
Outputs
F:ChainComplex
possibly non-minimal R-free resolution of R/(ideal vars R)
Description
Text
computes the Eagon resolution
Example
S = ZZ/101[a,b,c]
I = ideal(a,b,c)*ideal(b,c)
R = S/I
eagonResolution(R,5)
SeeAlso
eagon
///
--docpicture
doc ///
Key
picture
(picture, Matrix)
(picture, ChainComplex)
(picture, EagonData)
[picture, Display]
[picture, Verbose]
[picture, Transpose]
Headline
information about components of a labeled Matrix or ChainComplex
Usage
N = picture M
L = picture C
L = picture E
Inputs
M:Matrix
C:ChainComplex
E:EagonData
produced by eagon; picture E is equivalent to picture @TO eagonResolution@ E and to picture res E
Outputs
N:Net
L:List
List of Nets, one for each map in the complex
Description
Text
The free modules that are the sources and targets of the matrices defined in the EagonData eagon(R,b)
generally have many components. These can be analyzed with the functions
picture, and @TO mapComponent@. Each summand of one of these free modules has
a label of the form (i, \{u_1..u_s\}) representing the tensor product K_i ** X_{u_1}**..**X_{u_s},
where 0\leq i \leq numvars R and 1\leq u_t \leq projective dimension over S of R.
Thus a block is identified by a pair of such symbols in the order target, source.
For any labeled matrix M, picture M (with the default option Display => "picture")
prints a net showing which blocks of the matrix are
0 (represented by .); or
nonzero and in the maximal ideal, represented by *; or
contain a unit entry, represented by a pair of numbers, which are
the rank of the target of the matrix and the rank of the matrix tensored with the residue field
(the "nonminimal part").
Options:
The default option is Display => "picture".
With the option Display=>"DisplayBlocks", picture prints the matrices in each block.
With any other assignment such as Display =>"", Display prints the whole matrix, without showing
the block structure.
With the option Verbose => true, picture prints (numrows,numcols) for each block.
With the option Transpose => true, picture prints the data for the transposed matrix
(possibly useful if there are many columns in the matrix).
Applied to a complex of labeled matrices such as that produced by (res, EagonData) or applied to
an instance of EagonData,
picture prints a netList of the pictures of the maps in the complex
Example
S = ZZ/101[a,b,c]
I = ideal(a,b)*ideal(a,b,c)
R = S/I
E = eagon(R,4);
picture E
picture E#{"eagonBeta",3,0}
picture E
picture verticalStrand(E,1)
SeeAlso
eagon
"eagonBeta"
eagonResolution
DisplayBlocks
mapComponent
///
--docdisplayBlocks
doc ///
Key
DisplayBlocks
Headline
Display => "DisplayBlocks" option for picture
Usage
N = picture(M, Display => "DisplayBlocks")
Inputs
M:Matrix
Outputs
N:Net
prints a "picture" -- a net -- showing information about the blocks
Description
Text
The free modules that are the sources and targets of the matrices defined in the EagonData eagon(R,b)
generally have many components. These can be analyzed with the functions
@TO picture@, and @TO mapComponent@. Each summand of one of these free modules has
a label of the form (i, {u_1..u_s}) representing the tensor product K_i ** X_{u_1}**..**X_{u_s},
where 0\leq i \leq numvars R and 1\leq u_t \leq projective dimension R.
Thus a block is identified by a pair of such symbols, representing source and target.
Display => "picture"; with this option, @TO picture@ does not actually print
the entries of the matrices. But picture(M, Display => "DisplayBlocks") prints a net
with the matrices themselves.
Example
S = ZZ/101[a,b,c]
I = ideal(a,b)*ideal(a,b,c)
R = S/I
E = eagon(R,4);
C = horizontalStrand(E,0)
picture C
picture(C, Display => "DisplayBlocks")
SeeAlso
eagon
eagonResolution
picture
mapComponent
horizontalStrand
verticalStrand
///
--doceagonBeta
doc///
Key
eagonBeta
(eagonBeta,EagonData)
(eagonBeta,EagonData,ZZ)
[eagonBeta, Display]
[eagonBeta, Verbose]
Headline
print the eagonBeta maps in the Eagon resolution
Usage
N = eagonBeta E
N = eagonBeta(E,n)
Inputs
E:EagonData
created by eagon(R,b)
n:ZZ
which eagonBeta to show
Outputs
N:Net
either a "Display" display (with Display => "picture", the default) or a "displayBlocks" display
with Display => "DisplayBlocks" or a plain matrix if Display => <anything else>.
With Verbose => true, the display includes (rank target eagonBeta,rank source eagonBeta)
Description
Text
The eagonBeta maps are the components of the Eagon resolution,
starting from the 2nd differential that may or may not be minimal,
and are therefore most interesting. With the default option
Display => "picture"
the pictures (which blocks are 0,nonzero, nonminimal) are shown; or
the displayBlocks output
with Display => "DisplayBlocks" or a plain matrix if Display => <any other string>.
In the notes of Gulliksen-Levin it is proven that R is Golod if and only if the maps eagonBeta can be
taken with values in the Koszul complex; thus in particular, if R is Golod, then
there are no "new" eagonBetas after eagonBeta(E,numgens R+1). Since R is Golod iff all the eagonBeta matrices have
all entries in the maximal ideal, this proves in particular that R is Golod if and only if
the Betti numbers of the resolution of coker vars R agree up to the step numgens R with
the Betti numbers of the Eagon resolution.
Example
S = ZZ/101[a,b,c,d]
I = ideal(a,b,c)*ideal(a,b,c,d)
I = ideal"a3,b3,c3"
R = S/I
E = eagon(R,4);
eagonBeta(E,4)
eagonBeta(E,4,Display => "DisplayBlocks")
eagonBeta(E,4,Display => "")
eagonBeta E
SeeAlso
eagon
picture
DisplayBlocks
///
--dochorizontalStrand
doc///
Key
horizontalStrand
(horizontalStrand, EagonData, ZZ)
Headline
extracts one horizontal strand from an Eagon double complex
Usage
F = horizontalStrand(E,i)
Inputs
E:EagonData
produced by eagon(R,b)
i:ZZ
which strand
Outputs
F:ChainComplex
beginning of the free resolution of the i-th boundary module of the Koszul complex
Description
Text
The 0-th strand is a possibly non-minimal resolution of the residue field.
More generally, the i-th strand resolves the i-th boundary module in the Koszul complex of R. These
resolutions are
all minimal iff R is Golod.
Example
S = ZZ/101[x,y,z]
R = S/((ideal(x,y))^2+ideal(z^3))
E = eagon(R,5);
F = horizontalStrand(E,2)
picture F
SeeAlso
verticalStrand
eagon
picture
///
--docverticalStrand
doc ///
Key
verticalStrand
(verticalStrand, EagonData, ZZ)
Headline
extracts one vertical strand from an Eagon double complex
Usage
F = verticalStrand(E,i)
Inputs
E:EagonData
produced by eagon(R,b)
i:ZZ
which strand
Outputs
F:ChainComplex
beginning of the free resolution of the i-th boundary module of the Koszul complex
Description
Text
The 0-th vertical strand is the Koszul complex of R. The vertical strands are
never resolutions unless R is regular. The key lemma in Eagon's treatment identifies
the i-th homology H_i of the n-th vertical strand with H_0**X_i.
Example
S = ZZ/101[x,y,z]
R = S/((ideal(x,y))^2+ideal(z^3))
E = eagon(R,5);
F = verticalStrand(E,3)
picture F
SeeAlso
horizontalStrand
eagon
picture
///
--docmapComponent
doc ///
Key
mapComponent
(mapComponent, Matrix, Sequence, Sequence)
Headline
extract a single component from a labeled map
Usage
N = mapComponent(M,tar,src)
Inputs
M:Matrix
labeled map from eagon(R,b)
tar:Sequence
symbol of a free module components of the Eagon resolution
src:Sequence
symbol of a free module components of the Eagon resolution
Outputs
N:Matrix
Description
Text
The source and target of a a map in the Eagon double complex, such as
dVert, dHor, and eagonBeta, are direct sums of tensor products of the form
K_i**X_{u_1}**..**X_{u_s} where K_i is a term of the Koszul complex and X_i
is a term of the S-free resolution of R, all tensored with R.
This tensor product is represented by a symbol that is a two element Sequence
(i, \{u_1..u_s\})
The block structure of the matrix, together with the source and
target Sequences, can be seen from
picture M.
The function mapComponent returns a single block.
Example
S = ZZ/101[a,b,c,d,e]
R = S/(ideal(e^2,d*e^4)+(ideal"ab,ac")^2) --a non-Golod ring, generators in different degrees
E = eagon (R,5);
picture E#{"dHor",3,0}
mapComponent(E#{"dHor",3,0}, (0,{1}),(1,{1}))
picture E#{"dVert",3,1}
mapComponent(E#{"dVert",3,1}, (0,{2}),(0,{1,1}))
picture E#{"eagonBeta",3,1}
mapComponent(E#{"eagonBeta",3,1}, (0,{2}),(0,{1,1}))
SeeAlso
picture
DisplayBlocks
eagon
///
--docgolodBetti
doc ///
Key
golodBetti
(golodBetti, ChainComplex, ChainComplex, ZZ)
(golodBetti, Module, ZZ)
Headline
list the ranks of the free modules in the resolution of a Golod module
Usage
B = golodBetti(F,K,b)
B = golodBetti(M,b)
Inputs
F:ChainComplex
resolution, typically of (R = S/I)^1 over S
K:ChainComplex
resolution, typically of an R-module M over S
M:Module
R-module
b:ZZ
homological degree to which to carry the computation
Outputs
B:BettiTally
This would be betti table of the free res of M over R, if M were a Golod module over R
Description
Text
Let S be a standard graded polynomial ring. A module M over R = S/I is Golod if
the resolution H of M has maximal betti numbers given the
betti numbers of the S-free resolutions F of R and K of M. This resolution, H,
has underlying graded module H = R**K**T(F'), where F' is the truncated resolution
F_1 <- F_2... and T(F') is the tensor algebra.
Since the component modules of H are given, the computation only requires the computation of
the minimal S-free resolution of M, and then is purely numeric;
the differentials in the R-free resolution of M are not computed.
In case M = coker vars R, the result is the Betti table of the Golod-Shamash-Eagon
resolution of the residue field.
We say that M is a Golod module (over R) if the ranks of the free modules in a minimal R-free resolution
of M are equal to the numbers produced by golodBetti. Theorems of Levin and Lescot assert that if
R has a Golod module, then R is a Golod ring; and that if R is Golod, then the d-th syzygy
of any R-module M is Golod for all d greater than or equal to the projective dimension
of M as an S-module (more generally, the co-depth of M) (Avramov, 6 lectures, 5.3.2).
Example
S = ZZ/101[a,b,c]
I = (ideal(a,b,c^2))^2
F = res(S^1/I)
K = res coker vars S
R = S/I
E = eagon(R,6);
golodBetti(F,K,6)
betti res (coker vars R, LengthLimit => 6)
betti eagonResolution E
SeeAlso
eagon
eagonResolution
///
-*
--doceagonSymbols
doc ///
Key
eagonSymbols
(eagonSymbols, ZZ, ZZ)
Headline
symbols of the components of a module in the Eagon double complex
Usage
L = eagonSymbols(n,i)
Inputs
n:ZZ
column indix
i:ZZ
row index
Outputs
L:List
list of symbols
Description
Text
Each module in the Eagon double complex is a direct sum of tensor products of
a component of the Koszul complex and a list of modules X_i. Such
a tensor product is represented by a symbol that is a two element Sequence
of the form
(i, {u_1..u_s})
representing K_i ** X_{u_1} ** .. ** X_{u_s}.
The function eagonSymbols(n,i) produces the list of symbols of the summands
of the module Y^n_i in the n-th column, i-th row of the double complex.
This is done arithmetically, that is, without computing the double complex.
Example
L = eagonSymbols(3,2)
Text
This is the list of symbols associated to the source of (for example)
the 2-nd differential in the 3-rd vertical strand of the double complex.
Example
S = ZZ/101[a,b,c,d,e]
R = S/(ideal vars S)^2 --a Golod ring
E = eagon(R,3);
V = verticalStrand(E,3)
picture (V.dd_2)
Text
Compare the top row with
Example
L
SeeAlso
eagon
picture
DisplayBlocks
mapComponent
///
*-
--docDisplay
doc ///
Key
Display
Headline
Option for eagonBeta, default is "picture"
Usage
eagonBeta(E,Display => "picture")
Inputs
E:EagonData
Description
Text
if Display=>"picture" then @TO picture@ is invoked; if Display =>"DisplayBlocks"
then a net with the matrices (the "blocks") is produced.
Example
R = ZZ/101[x,y,z]/ideal"x3,y3,z3"
E = eagon(R,5);
eagonBeta(E,3)
eagonBeta(E,3,Display =>"DisplayBlocks")
SeeAlso
eagon
///
--docCompressBeta
doc ///
Key
CompressBeta
Headline
CompressBeta is an option for eagon, default is true
Usage
E = eagon(R,b,CompressBeta =>bool1, Verbose =>bool2)
Inputs
R:Ring
b:ZZ
bool1: Boolean
bool2: Boolean
Outputs
E:EagonData
Description
Text
eagonBeta(E,i) := E#{"eagonBeta",n,0}
is defined by lifting another map along the map dVert^n_i. If
CompressBeta => true, the default, then the lifting uses
the smallest initial subsequence of the blocks of source dVert as possible,
and thus the columns of picture eagonBeta(E,i) will have fewer nonzero entries.
if Verbose =>true, then data about the usage is printed.
Example
R = ZZ/101[x,y,z]/ideal"x3,y3,z3"
E = eagon(R,4,CompressBeta =>true, Verbose =>true);
SeeAlso
eagon
eagonBeta
///
doc ///
Key
Transpose
Headline
Transpose => false, default option for picture
Usage
N = picture(M, Transpose => b)
Inputs
M:Matrix
labeled matrix
b:Boolean
Outputs
N: Net
Description
Text
With the option Transpose => true, picture prints the picture of the transposed matrix; when
the matrix has many more columns than rows this makes it easier to read.
Example
S = ZZ/101[a,b]
R = S/ideal"a2,b2"
E = eagon(R,3)
picture res E
picture(res E, Transpose => true)
SeeAlso
DisplayBlocks
Verbose
///
doc ///
Key
(net, EagonData)
Headline
prints the homological degree to which the EagonData has been computed
Usage
s = net E
Inputs
E:EagonData
Outputs
s:Net
Description
Text
prints the homological degree to which the EagonData has been computed
Example
R = ZZ/101[a,b]/ideal"a2,b2"
E = eagon(R,4)
net E
SeeAlso
EagonData
///
doc ///
Key
(resolution, EagonData)
Headline
outputs the resolution that is the 0th row of the Eagon double complex
Usage
C = resolution E
Inputs
E:EagonData
Outputs
C:ChainComplex
Description
Text
This command is equivalent to @TO (eagonResolution, EagonData)@.
Example
R = ZZ/101[a,b]/ideal"a2,b2"
E = eagon(R,4)
C = resolution E
picture C
SeeAlso
eagon
EagonData
eagonResolution
picture
///
----TESTS
-*
restart
uninstallPackage "EagonResolution"
installPackage "EagonResolution"
check EagonResolution
viewHelp EagonResolution
loadPackage("EagonResolution", Reload => true)
*-
TEST///
S = ZZ/101[a,b,c]
I = ideal(a,b)*ideal"a3,b3,c3"
R = S/I
E = eagon(R,6,CompressBeta =>true);
En = eagon(R,6,CompressBeta => false);
F = eagonResolution E
Fn= eagonResolution En
assert(F.dd^2 == 0)
assert(Fn.dd^2 == 0)
assert(all(5, i->prune HH_(i+1) F == 0))
assert(all(5, i->prune HH_(i+1) Fn == 0))
///
TEST///
debug EagonResolution
S = ZZ/101[a,b,c]/ideal(b^2,c^2) -- complete intersection
B = 3
E = eagon(S,B);
F = eagonResolution E
M = F.dd_3
M' = extractBlocks(M,{0,2})
M'' = map(target M', source M', matrix {{c, 0, -b, 0, 0, 0, 0, 0}, {-b, 0, 0, -c, 0, 0, 0, 0}, {a, 0, 0, 0, 0, -c, b, 0}, {0, 0, a, 0, b,
0, c, 0}, {0, 0, 0, a, 0, b, 0, c}})
assert(M' == M'')
///
TEST///
S = ZZ/101[a,b,c]
R = S/(ideal"ab,ac")^2 --a simple Golod ring on which to try this
b = 6
E = eagon(R,b);
F = eagonResolution E
G = res (coker vars R, LengthLimit => b)
assert(betti F == betti G)
assert(F.dd^2== 0)
assert(all(b-1, i-> prune (HH_(i+1) F) == 0))
///
TEST///
debug EagonResolution
S = ZZ/101[a,b,c,d,e]
A = S^1
B = S^2
A' = labeler((0,{1}),A)
indices A'
B' = labeler((0,{2}),B)
assert(indices eTensor(A',B') == {(0, {1, 2})})
assert(indices (T = eTensor(B',A')) == {(0, {2, 1})})
assert(indices trimWithLabel T == {(0, {2, 1})})
///
TEST/// -- test of eagon
S = ZZ/101[a,b,c]
R = S/(ideal"ab,ac")^2 --a simple Golod ring on which to try this
bound = 6
E = eagon(R,bound);
Y = apply(bound, n-> verticalStrand(E,n))
assert(all(#Y, n->((Y_n).dd)^2 == 0))
assert all(#Y, n->isHomogeneous Y_n)
F = eagonResolution(R,bound)
F = eagonResolution E
assert isHomogeneous F
assert all(bound-1,i-> prune HH_(i+1) F == 0)
assert(betti res(coker vars R,LengthLimit => bound) == betti F)
S = ZZ/101[a,b,c,d,e]
R = S/(ideal(e^2,d*e^4)+(ideal"ab,ac")^2) --a non-Golod ring, generators in different degrees
E = eagon(R,5);
Y = apply(5, n -> verticalStrand(E,n));
assert(all(#Y, n->((Y_n).dd)^2 == 0))
assert all(#Y, n->isHomogeneous Y_n)
F = eagonResolution(R,5)
assert isHomogeneous F
assert all(4,i-> prune HH_(i+1) F == 0)
///
TEST///
debug needsPackage "EagonResolution"
assert(eagonSymbols(1,2) == {(3, {}), (0, {2})})
assert (eagonSymbols(2,1) == eagonSymbols(3,0))
assert(eagonSymbols(1,3) == {(4, {}), (0, {3})})
assert(eagonSymbols(2,2) == {(4, {}), (0, {3}), (1, {2})})
assert(eagonSymbols(2,0) == {(2, {}), (0, {1})})
assert(eagonSymbols(3,1) == {(4, {}), (0, {3}), (1, {2}), (2, {1}), (0, {1, 1})})
assert(eagonSymbols(3,2) == {(5, {}), (0, {4}), (1, {3}), (2, {2}), (0, {1, 2})})
///
///
restart
loadPackage("EagonResolution",Reload => true)
needsPackage "DGAlgebras"
///
TEST///
S = ZZ/101[x,y,z]
I = trim(ideal(x,y)*ideal"x,y2,z")
R = S/I
F = res I
G = res coker vars S
b = 6
H = res(coker vars R,LengthLimit =>6)
E = eagon(R,b);
assert(betti eagonResolution E == betti H)
assert(golodBetti(F,G,b) == betti H)
assert (golodBetti (coker vars R,b) == betti H)
///
-- TODO: PLACE INTO M2 CORE
--SOME USEFUL INTERNAL FUNCTIONS
-- "compositions"
-- "isDegreeZeroSurjection",
-- "isIsomorphic"
-*
compositions(ZZ,ZZ,ZZ) := (nparts, k, maxelem) -> (
-- nparts is the number of terms
-- k is the sum of the elements
-- each element is between 0 and maxelem.
compositionn := (n,k) -> (
if n===0 or k < 0 then {}
else if k===0 then {toList(n:0)}
else (
set1 := apply(compositionn(n-1,k), s -> s | {0});
set2 := apply(compositionn(n,k-1), s -> s + (toList(n-1:0) | {1}));
set2 = select(set2, s -> s#(n-1) <= maxelem);
join(set1, set2)
)
);
compositionn = memoize compositionn;
result := compositionn(nparts,k);
compositionn = null;
result
);
isDegreeZeroSurjection := method()
isDegreeZeroSurjection(Module,Module) := Boolean => (A,B) -> (
--tests a random degree 0 map f:A --> B to see whether its a surjection,
--and returns the answer. If "true" and o.Verbose == true then returns f.
H := Hom(A,B);
B0 := basis(0,H); -- this seems to be total degree 0 in case of degreeLength>1
f := homomorphism(B0*random(source B0, (ring B0)^1));
coker f == 0
)
-- the following function works for modules in the graded case.
-- and produces (only) graded isomorphisms.
isIsomorphic = method()
isIsomorphic(Module,Module) := (A,B) -> (
--tests random degree 0 maps A->B, B->A and returns true
--if both are surjective.
if not(isHomogeneous A and isHomogeneous B) then
error"not implemented for inhomogeneous modules";
Ap := prune A;
Bp := prune B;
dA := set flatten degrees source gens Ap;
dB := set flatten degrees source gens Bp;
if dA =!= dB then return false;
degreeZeroSurjection(Ap,Bp) =!= null and degreeZeroSurjection(Bp,Ap) =!= null
)
*-
TEST/// --test of degreeZeroSurjection
debug needsPackage "EagonResolution"--degreeZeroSurjection is not exported.
S = ZZ/101[a,b]
A = S^{1,0}; B = S^{0,1};B1 = B/((ideal a)*B)
f = degreeZeroSurjection(A,B)
assert(source f == A)
assert(target f == B)
assert(coker f == 0)
f = degreeZeroSurjection(A,B1)
assert(source f == A)
assert(target f == B1)
assert(coker f == 0)
f = degreeZeroSurjection(B1,A)
assert(f===null)
///
end--
------------------------------------
restart
uninstallPackage "EagonResolution"
restart
installPackage "EagonResolution"
check EagonResolution
viewHelp EagonResolution
|