1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
export{"lumped"}
lumped = method()
lumped (Ring) := kk -> (
x := symbol x;
R := kk[x_1..x_4];
{ ( 7.67718790000000e-01 + 3.28202780000000e-01*ii)*x_1*x_3+( 7.67718790000000e-01 + 3.28202780000000e-01*ii)*x_1*x_4+(-1.76771879000000 - 3.28202780000000e-01*ii)*x_1+( 5.48909490000000e-01 + 1.09394900000000e-01*ii)*x_3+( 4.79608000000000e-02 + 8.88686780000000e-01*ii),
( 3.30100210000000e-01 + 8.90584170000000e-01*ii)*x_2*x_3+( 3.30100210000000e-01 + 8.90584170000000e-01*ii)*x_2*x_4+(-1.33010021000000 - 8.90584170000000e-01*ii)*x_2+( 1.11290920000000e-01 + 6.71774920000000e-01*ii)*x_4+( 8.29151510000000e-01 + 6.69877470000000e-01*ii),
(-7.67718790000000e-01 - 3.28202780000000e-01*ii)*x_1*x_3+(-7.67718790000000e-01 - 3.28202780000000e-01*ii)*x_1*x_4+(-8.92481630000000e-01 - 4.52965620000000e-01*ii)*x_3*x_4+( 7.67718790000000e-01 + 3.28202780000000e-01*ii)*x_1+(-5.48909490000000e-01 - 1.09394900000000e-01*ii)*x_3,
(-3.30100210000000e-01 - 8.90584170000000e-01*ii)*x_2*x_3+(-3.30100210000000e-01 - 8.90584170000000e-01*ii)*x_2*x_4+(-8.92481630000000e-01 - 4.52965620000000e-01*ii)*x_3*x_4+( 3.30100210000000e-01 + 8.90584170000000e-01*ii)*x_2+(-1.11290920000000e-01 - 6.71774920000000e-01*ii)*x_4
}
)
beginDocumentation()
doc ///
Key
lumped
(lumped,Ring)
Headline
lumped parameter chemically reacting system
Usage
lumped(kk)
Inputs
kk:Ring
the coefficient ring
Outputs
:List
of the polynomials in the system
Description
Text
This system was solved in May 2020, using @TO solveSystem@ in Macaulay2 v1.15
with an Intel(R) Core(TM) i5-5250U CPU at 1.60GHz.
There were 4 solutions found in 0.178 seconds (with a Bezout bound of 16).
Reference: "Solving deficient polynomial systems with homotopies which keep
the subschemes at infinity invariant" by T.Y. Li and X. Wang (pages 693-710).
See also: http://homepages.math.uic.edu/~jan/Demo/lumped.html.
Example
lumped(CC_53)
///
|