1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
|
-- -*- coding: utf-8 -*-
----------------------------------------------------
----------------------------------------------------
-- previous version: 0.2 30Jun08, submitted by Josephine Yu.
-- author: Mike Stillman --
-- core
-- author: Josephine Yu --
-- all remaining functions; documentation
-- Sonja Petrovic --
-- interface for windows; edited documentation; tests
--
-- latest major update: 6Jul08;
-- small revision in Documentation: 6oct08; SP.
----------------------------------------------------
----------------------------------------------------
newPackage(
"FourTiTwo",
Version => "1.0",
Date => "February 8, 2009",
Authors => {
{Name => "Mike Stillman", Email => "mike@math.cornell.edu"},
{Name => "Josephine Yu", Email => "jyu@math.mit.edu"},
{Name => "Sonja Petrovic", Email => "petrovic@psu.edu"}
},
Headline => "Interface to 4ti2",
Keywords => {"Interfaces"},
Configuration => { "path" => "",
"keep files" => true
},
DebuggingMode => false
)
export {
"toBinomial",
"getMatrix",
"putMatrix",
"toricMarkov",
"toricGroebner",
"toricCircuits",
"toricGraver",
"hilbertBasis",
"rays",
"InputType",
"toricGraverDegrees"
}
-- for backward compatibility
if not programPaths#?"4ti2" and FourTiTwo#Options#Configuration#"path" != ""
then programPaths#"4ti2" = FourTiTwo#Options#Configuration#"path"
fourTiTwo = null
run4ti2 = (exe, args) -> (
if fourTiTwo === null then
fourTiTwo = findProgram("4ti2", "markov -h",
Prefix => {(".*", "4ti2-"), -- debian
(".*", "4ti2_")}, -- suse
AdditionalPaths =>
{"/usr/lib/4ti2/bin", "/usr/lib64/4ti2/bin"}); -- fedora
runProgram(fourTiTwo, exe, args)
)
getFilename = () -> (
filename := temporaryFileName();
while fileExists(filename) or fileExists(filename|".mat") or fileExists(filename|".lat") do filename = temporaryFileName();
filename)
putMatrix = method()
putMatrix(File,Matrix) := (F,B) -> (
B = entries B;
numrows := #B;
numcols := #B#0;
F << numrows << " " << numcols << endl;
for i from 0 to numrows-1 do (
for j from 0 to numcols-1 do (
F << B#i#j << " ";
);
F << endl;
);
)
getMatrix = method()
getMatrix String := (filename) -> (
L := lines get filename;
l := toString first L;
v := value("{" | replace(" +",",",l)|"}");
dimensions := select(v, vi -> vi =!= null);
if dimensions#0 == 0 then ( -- matrix has no rows
matrix{{}}
) else(
L = drop(L,1);
--L = select(L, l-> regex("^[:space:]*$",l) === null);--remove blank lines
matrix select(
apply(L, v -> (w := value("{" | replace(" +",",",v)|"}"); w = select(w, wi -> wi =!= null))),
row -> row =!= {}
)
))
toBinomial = method()
toBinomial(Matrix,Ring) := (M,S) -> (
toBinom := (b) -> (
pos := 1_S;
neg := 1_S;
scan(#b, i -> if b_i > 0 then pos = pos*S_i^(b_i)
else if b_i < 0 then neg = neg*S_i^(-b_i));
pos - neg);
ideal apply(entries M, toBinom)
)
toricMarkov = method(Options=> {InputType => null})
toricMarkov Matrix := Matrix => o -> (A) -> (
filename := getFilename();
if debugLevel >= 1 then << "using temporary file name " << filename << endl;
if o.InputType === "lattice" then
F := openOut(filename|".lat")
else
F = openOut(filename|".mat");
putMatrix(F,A);
close F;
run4ti2("markov", rootPath | filename);
getMatrix(filename|".mar")
)
toricMarkov(Matrix,Ring) := o -> (A,S) -> toBinomial(toricMarkov(A,o), S)
toricGroebner = method(Options=>{Weights=>null})
toricGroebner Matrix := o -> (A) -> (
filename := getFilename();
if debugLevel >= 1 then << "using temporary file name " << filename << endl;
F := openOut(filename|".mat");
putMatrix(F,A);
close F;
if o.Weights =!= null then (
cost := concatenate apply(o.Weights, x -> (x|" "));
(filename|".cost") << "1 " << #o.Weights << endl << cost << endl << close;
);
run4ti2("groebner", rootPath | filename);
getMatrix(filename|".gro")
)
toricGroebner(Matrix,Ring) := o -> (A,S) -> toBinomial(toricGroebner(A,o), S)
toricCircuits = method()
toricCircuits Matrix := Matrix => (A ->(
filename := getFilename();
if debugLevel >= 1 then << "using temporary file name " << filename << endl;
F := openOut(filename|".mat");
putMatrix(F,A);
close F;
run4ti2("circuits", rootPath | filename);
getMatrix(filename|".cir")
))
toricGraver = method()
toricGraver Matrix := Matrix => (A ->(
filename := getFilename();
if debugLevel >= 1 then << "using temporary file name " << filename << endl;
F := openOut(filename|".mat");
putMatrix(F,A);
close F;
run4ti2("graver -q ", rootPath | filename);
getMatrix(filename|".gra")
))
toricGraver (Matrix,Ring) := Ideal => ((A,S)->toBinomial(toricGraver(A),S))
hilbertBasis = method(Options=> {InputType => null})
hilbertBasis Matrix := Matrix => o -> (A ->(
filename := getFilename();
if debugLevel >= 1 then << "using temporary file name " << filename << endl;
if o.InputType === "lattice" then
F := openOut(filename|".lat")
else
F = openOut(filename|".mat");
putMatrix(F,A);
close F;
run4ti2("hilbert", rootPath | filename);
getMatrix(filename|".hil")
))
rays = method()
rays Matrix := Matrix => (A ->(
filename := getFilename();
if debugLevel >= 1 then << "using temporary file name " << filename << endl;
F := openOut(filename|".mat");
putMatrix(F,A);
close F;
run4ti2("rays", rootPath | filename);
getMatrix(filename|".ray")
))
-- SP: the output command interface
-- I would like to have a command that gives the list of degrees of Graver/Groebner/Circuit/Markov file;
-- the way 4ti2 does this is you tell it the whatever.mar or whatever.cir file and it writes the degrees
-- to the screen.
-- On the other hand, it doesn't matter because you can ask M2 for those degrees directly!
toricGraverDegrees = method()
toricGraverDegrees Matrix := Matrix => (A ->(
filename := getFilename();
if debugLevel >= 1 then << "using temporary file name " << filename << endl;
F := openOut(filename|".mat");
putMatrix(F,A);
close F;
run4ti2("graver", rootPath | filename);
ret := run4ti2("output", "--degrees " | rootPath | filename|".gra");
print ret#"output"
))
beginDocumentation()
doc ///
Key
FourTiTwo
Headline
Interface for 4ti2
Description
Text
Interfaces most of the functionality of the software {\tt 4ti2} available at
@HREF"http://www.4ti2.de/"@.
(The user needs to have {\tt 4ti2} installed on his/her machine.)
A $d\times n$ integral matrix $A$ (with nonnegative entries) specifies a map from a polynomial
ring in d variables to a polynomial ring with n variables by specifying exponents of the variables indexing
its columns. For example, if $A$ is a matrix
$$\begin{pmatrix}
3&2&1&0\\
0&1&2&3
\end{pmatrix}$$
the map from $k[s,t]$ to $k[a,b,c,d]$ is given by
$(s,t) \mapsto \ (s^3,s^2t,st^2,t^3)$.
The toric ideal $I_A$ is the kernel of this map.
It is minimally generated by the 2-minors of the matrix
$$\begin{pmatrix}
x&y&z\\
y&z&w
\end{pmatrix}$$
Given the matrix $A$, one can compute its lattice basis ideal specified by the integral basis
of the lattice $A$, the toric ideal $I_A$, its Groebner bases, etc. In practice, however,
these are nontrivial computational tasks.
The software {\tt 4ti2} is very efficient in computing these objects.
For more theoretical details (and more generality), see the standard reference:
B. Sturmfels, {\bf Gr\"obner bases and convex polytopes.}
American Mathematical Society, University Lectures Series, No 8, Providence, Rhode Island, 1996.
{\bf Note for cygwin users:}
If a problem occurs during package installation and/or loading, it should be fixed
by setting the path inside the file {\tt .Macaulay2/init-FourTiTwo.m2} to whatever folder {\tt 4ti2} is installed.
For example, if {\tt 4ti2} has been installed in {\tt C:/cygwin/4ti2/win32}, then the line
inside the {\tt init-FourTiTwo.m2} file will look like this: {\tt "path" => "C:/cygwin/4ti2/win32/"} .
Alternately, the path for {\tt 4ti2} may be set when loading the package using the following command:
loadPackage("FourTiTwo", Configuration=>{"path"=>"C:/cygwin/4ti2/win32/"})
assuming that 4ti2 has been installed in C:/cygwin/4ti2/win32.
Caveat
If the package SimpleDoc is not found when installing {\tt FourTiTwo.m2},
see questions and answers 6, 7, and 8 on the Macaulay 2 web site.
///;
doc ///
Key
getMatrix
(getMatrix, String)
Headline
reads a matrix from a 4ti2-formatted input file
Usage
getMatrix s
Inputs
s:String
file name
Outputs
A:Matrix
Description
Text
The file should contain a matrix in the format such as
2 4\break
1 1 1 1\break
1 2 3 4\break
The first two numbers are the numbers of rows and columns.
SeeAlso
putMatrix
///;
doc ///
Key
putMatrix
(putMatrix,File,Matrix)
Headline
writes a matrix into a file formatted for 4ti2
Usage
putMatrix(F,A)
Inputs
F:File
A:Matrix
Description
Text
Write the matrix {\tt A} in file {\tt F} in {\tt 4ti2} format.
Example
A = matrix "1,1,1,1; 1,2,3,4"
s = temporaryFileName()
F = openOut(s)
putMatrix(F,A)
close(F)
getMatrix(s)
SeeAlso
getMatrix
///;
doc ///
Key
toBinomial
(toBinomial, Matrix, Ring)
Headline
creates a toric ideal from a given set of exponents of its generators
Usage
toBinomial(M,R)
Inputs
M: Matrix
R: Ring
ring with as least as many generators as the columns of {\tt M}
Outputs
I: Ideal
Description
Text
Equivalent to "output --binomials" in 4ti2.
Returns the ideal in the ring {\tt R} generated by the binomials corresponding to rows of {\tt M}.
Example
A = matrix "1,1,1,1; 1,2,3,4"
B = syz A
R = QQ[a..d]
toBinomial(transpose B,R)
///;
doc ///
Key
toricGroebner
(toricGroebner, Matrix)
(toricGroebner, Matrix, Ring)
[toricGroebner, Weights]
Headline
calculates a Groebner basis of the toric ideal I_A, given A; invokes "groebner" from 4ti2
Usage
toricGroebner(A) or toricGroebner(A,R)
Inputs
A:Matrix
whose columns parametrize the toric variety. The toric ideal $I_A$ is the kernel of the map defined by {\tt A}.
R:Ring
ring with as least as many generators as the columns of {\tt A}
Outputs
B:Matrix
whose rows give binomials that form a Groebner basis of the toric ideal of {\tt A}
I:Ideal
whose generators form a Groebner basis for the toric ideal
Description
Example
A = matrix "1,1,1,1; 1,2,3,4"
toricGroebner(A)
Text
Note that the output of the command is a matrix whose rows are the exponents of the binomials that for a Groebner basis of the
toric ideal $I_A$.
As a shortcut, one can ask for the output to be an ideal instead:
Example
R = QQ[a..d]
toricGroebner(A,R)
Text
{\tt 4ti2} offers the use of weight vectors representing term orders, as follows:
Example
toricGroebner(A,Weights=>{1,2,3,4})
Caveat
It seems that some versions of 4ti2 do not pick up on the weight vector. It may be better to run gb computation in M2 directly with specified weights.
///;
doc ///
Key
toricMarkov
(toricMarkov, Matrix)
(toricMarkov, Matrix, Ring)
[toricMarkov, InputType]
Headline
calculates a generating set of the toric ideal I_A, given A; invokes "markov" from 4ti2
Usage
toricMarkov(A) or toricMarkov(A, InputType => "lattice") or toricMarkov(A,R)
Inputs
A:Matrix
whose columns parametrize the toric variety; the toric ideal is the kernel of the map defined by {\tt A}.
Otherwise, if InputType is set to "lattice", the rows of {\tt A} are a lattice basis and the toric ideal is the
saturation of the lattice basis ideal.
InputType=>String
which is the string "lattice" if rows of {\tt A} specify a lattice basis
R:Ring
polynomial ring in which the toric ideal $I_A$ should live
Outputs
B:Matrix
whose rows form a Markov Basis of the lattice $\{z {\rm integral} : A z = 0\}$
or the lattice spanned by the rows of {\tt A} if the option {\tt InputType => "lattice"} is used
Description
Text
Suppose we would like to comput the toric ideal defining the variety parametrized by the following matrix:
Example
A = matrix"1,1,1,1;0,1,2,3"
Text
Since there are 4 columns, the ideal will live in the polynomial ring with 4 variables.
Example
R = QQ[a..d]
M = toricMarkov(A)
Text
Note that rows of M are the exponents of minimal generators of $I_A$. To get the ideal, we can do the following:
Example
I = toBinomial(M,R)
Text
Alternately, we might wish to give a lattice basis ideal instead of the matrix A. The lattice basis will be specified
by a matrix, as follows:
Example
B = syz A
N = toricMarkov(transpose B, InputType => "lattice")
J = toBinomial(N,R) -- toricMarkov(transpose B, R, InputType => "lattice")
Text
We can see that the two ideals are equal:
Example
I == J
Text
Also, notice that instead of the sequence of commands above, we could have used the following:
Example
toricMarkov(A,R)
///;
doc ///
Key
toricGraver
(toricGraver, Matrix)
(toricGraver, Matrix, Ring)
Headline
calculates the Graver basis of the toric ideal; invokes "graver" from 4ti2
Usage
toricGraver(A) or toricGraver(A,R)
Inputs
A:Matrix
whose columns parametrize the toric variety. The toric ideal $I_A$ is the kernel of the map defined by {\tt A}
R:Ring
polynomial ring in which the toric ideal $I_A$ should live
Outputs
B:Matrix
whose rows give binomials that form the Graver basis of the toric ideal of {\tt A}, or
I:Ideal
whose generators form the Graver basis for the toric ideal
Description
Text
The Graver basis for any toric ideal $I_A$ contains (properly) the union of all reduced Groebner basis of $I_A$.
Any element in the Graver basis of the ideal is called a primitive binomial.
Example
A = matrix "1,1,1,1; 1,2,3,4"
toricGraver(A)
Text
If we prefer to store the ideal instead, we may use:
Example
R = QQ[a..d]
toricGraver(A,R)
Text
Note that this last ideal equals the toric ideal $I_A$ since every Graver basis element is actually in $I_A$.
///;
doc ///
Key
toricGraverDegrees
(toricGraverDegrees, Matrix)
Headline
displays the degrees of all Graver basis elements for the toric ideal I_A
Usage
toricGraverDegrees(A)
Inputs
A:Matrix
whose columns parametrize the toric variety. The toric ideal $I_A$ is the kernel of the map defined by {\tt A}
Description
Text
Equivalent to "output --degrees foo.gra" in 4ti2.
Very often the Graver basis consists of too many binomials, and one is only interested in their degrees. In this case,
instead of looking at the Graver basis of $I_A$, we may just want to look for the degrees of binomials which show up:
Example
A = matrix "1,1,1,1; 1,2,3,4"
toricGraver(A) -- the Graver basis
toricGraverDegrees(A) -- just the degrees
Text
Note that these are all 1-norms of the vectors. Since $I_A$ is homogeneous, there are 3 binomials of degree 2 (norm 4)
and 2 binomials of degree 3 (norm 6).
Here is a more complicated example, where one may not want to see the Graver basis elements explicitly.
The toric ideal I_M is the ideal of the rational normal scroll S(3,2,3):
Example
M = matrix "1,1,1,1,1,1,1,1,1,1,1; 1,1,1,1,0,0,0,0,0,0,0; 0,0,0,0,1,1,1,0,0,0,0; 0,0,0,0,0,0,0,1,1,1,1; 1,2,3,4,1,2,3,1,2,3,4"
toricGraverDegrees(M)
Text
Here is another example where with many Graver basis elements. The following matrix is a design matrix for a particular statistical model for a 4-node p1 network; see Fienberg-Petrovic-Rinaldo.
Example
A = matrix "1,0,1,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0;0,1,1,0,0,0,0,0,0,1,0,1,1,0,1,0,0,0;0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,1,0,1;0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1;0,1,1,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0;1,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0;0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,1,1;0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,1,0,1;0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1";
toricGraverDegrees(A)
///;
doc ///
Key
hilbertBasis
(hilbertBasis, Matrix)
[hilbertBasis, InputType]
Headline
calculates the Hilbert basis of the cone; invokes "hilbert" from 4ti2
Usage
hilbertBasis(A) or hilbertBasis(A, InputType => "lattice")
Inputs
A:Matrix
defining the cone $\{z : Az = 0, z \ge 0 \}$
Outputs
B:Matrix
whose rows form the Hilbert basis of the cone $\{z : Az = 0, z \ge 0 \}$
or the cone $\{z A : z {\rm {} is an integral vector and } z A \ge 0 \}$ if {\tt InputType => "lattice"} is used
Description
Example
A = matrix "1,1,1,1; 1,2,3,4"
B = syz A
hilbertBasis(transpose B)
hilbertBasis(A, InputType => "lattice")
///;
doc ///
Key
rays
(rays, Matrix)
Headline
calculates the extreme rays of the cone; invokes "rays" from 4ti2
Usage
rays(A)
Inputs
A:Matrix
defining the cone $\{z : Az = 0, z \ge 0 \}$
Outputs
B:Matrix
whose rows are the extreme rays of the cone $\{z : Az = 0, z \ge 0 \}$
Description
Example
A = matrix "1,1,1,1; 1,2,3,4"
B = syz A
rays(transpose B)
///;
doc ///
Key
toricCircuits
(toricCircuits, Matrix)
Headline
calculates the circuits of the toric ideal; invokes "circuits" from 4ti2
Usage
toricCircuits(A)
Inputs
A:Matrix
whose columns parametrize the toric variety. The toric ideal $I_A$ is the kernel of the map defined by {\tt A}
Outputs
B:Matrix
whose rows form the circuits of A
Description
Text
The circuits are contained in the Graver basis of $I_A$. In fact, they are precisely the primitive binomials in the ideal
with minimal support.
Example
A = matrix "1,1,1,1; 1,2,3,4"
C = toricCircuits A
Text
The ideal generated by the circuits of A in general differs from the toric ideal of A. For example:
Example
R = QQ[a..d]
Icircuit = toBinomial(toricCircuits(A), R) -- this is the circuit ideal of A
I = toBinomial(toricMarkov(A), R)
I==Icircuit
Text
The two ideals are not the same. There is a minimal generator of I which is not a circuit:
Example
a*d-b*c % I -- this binomial is in I:
a*d-b*c % Icircuit -- but not in Icircuit:
///;
doc ///
Key
InputType
Description
Text
Put {\tt InputType => "lattice"} as an argument in the functions toricMarkov and hilbertBasis
SeeAlso
toricMarkov
hilbertBasis
///;
TEST///
A = matrix "1,1,1,1; 1,2,3,4"
M = toricMarkov(A)
R = QQ[x_0,x_1,x_2,x_3]
I = toBinomial(M,R)
Irnc3 = ideal(x_0*x_2-x_1^2,x_1*x_3-x_2^2,x_0*x_3-x_1*x_2)
assert(I==Irnc3)
///
TEST ///
B = matrix "1,-2,1,0; 0,1,-2,1"
M = toricMarkov(B, InputType => "lattice")
R = QQ[x_0,x_1,x_2,x_3]
I = toBinomial(M,R)
Irnc3 = ideal(x_0*x_2-x_1^2,x_1*x_3-x_2^2,x_0*x_3-x_1*x_2)
assert(I== Irnc3)
///
TEST ///
R=CC[x_0,x_1,x_2,x_3]
A = matrix "1,1,1,1; 1,2,3,4"
C = toricCircuits(A) --circuits returned by 4ti2
Icir = toBinomial(C,R) -- circuit ideal returned by 4ti2
Ctrue = matrix{{0,1,-2,1},{1,-2,1,0},{1,0,-3,2},{2,-3,0,1}} --known: all circuits
IcirTrue = toBinomial(Ctrue,R) --known: circuit ideal
Irnc3 = ideal(x_0*x_2-x_1^2,x_1*x_3-x_2^2,x_0*x_3-x_1*x_2)
assert(Icir==IcirTrue)
shouldBeFalse = (Icir==Irnc3)
assert(shouldBeFalse==false)
assert(target C == target Ctrue)
assert(source C == source Ctrue)
///
TEST ///
B = matrix "1,-2,1,0; 0,1,-2,1"
R = QQ[a..d]
I = toBinomial(B,R)
assert(a*c-b^2 % I == 0)
assert(a*c-d^2 %I =!= 0)
assert(degree I == 4)
M = hilbertBasis B
assert(numrows M == 3)
assert(numcols M == 4)
M1 = rays B
assert(numrows M1 == 2)
assert(numcols M1 == 4)
///
TEST///
A = matrix "1,0,1,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0;0,1,1,0,0,0,0,0,0,1,0,1,1,0,1,0,0,0;0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,1,0,1;0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1;0,1,1,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0;1,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0;0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,1,1;0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,1,0,1;0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1"
M = toricGroebner(A); --note this matrix is the design matrix for the p1 statistical model on 4 nodes using a constant rho. (see fienberg/rinaldo/petrovic; in prep-missing reference).
assert(numrows M == 137)
assert(numcols M == 18)
R = QQ[x_1..x_18]
I = toBinomial(M,R);
assert(degree I == 192)
A1 = matrix "3,2,1,0;0,1,2,3" --one more example
R=QQ[x_0..x_3]
G4ti2=gens toricGroebner(A1,R)
GM2 =gens gb toricMarkov(A1,R)
Gtrue=toList flatten entries GM2
G = toList flatten entries G4ti2
apply(0..#Gtrue-1, j-> (isSubset({Gtrue_j},G) )) --checking 4ti2's gb against M2's gb
assert(numrows GM2 == numrows G4ti2)
assert(numcols GM2 == numcols G4ti2)
Rwt=QQ[x_0..x_3,Weights=>{3,2,4,1}] --with wt vector
G4ti2=gens toBinomial(toricGroebner(A1,Weights=>{3,2,4,1}),Rwt)
GM2=gens gb toricMarkov(A1,Rwt)
Gtrue=toList flatten entries GM2
G = toList flatten entries G4ti2
assert( numrows GM2 == numrows G4ti2 )
assert( numcols GM2 == numcols G4ti2 )
apply(0..#Gtrue-1, j-> assert(isSubset({Gtrue_j},G)) ) --checking 4ti2's gb against M2's gb
///
TEST///
needsPackage "FourTiTwo" --testing graver
A1 = matrix "3,2,1,0;0,1,2,3"
R=QQ[x_0..x_3]
G = toricGraver(A1)
assert( numrows G==5)
assert(numcols G==4)
Gtrue = toBinomial(matrix{{1,-2,1,0},{0,1,-2,1},{1,-1,-1,1},{2,-3,0,1},{1,0,-3,2}},R) --known: Graver basis
Gtrue=toList flatten entries gens Gtrue
G = toList flatten entries gens toBinomial(G,R)
apply(0..#Gtrue-1, j-> assert(isSubset({Gtrue_j},G)) ) --testing 4ti2 output against by-hand calculation!
A = matrix "1,0,1,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0;0,1,1,0,0,0,0,0,0,1,0,1,1,0,1,0,0,0;0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,1,0,1;0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,1,1;0,1,1,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0;1,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0;0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,1,1;0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,1,0,1;0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1"
M = toricGraver(A); --note this matrix is the design matrix for the p1 statistical model on 4 nodes using a constant rho. (see fienberg/rinaldo/petrovic; in prep-missing reference).
assert(numrows M == 7462)
assert(numcols M == 18)
AS=matrix"1,1,1,1,1,1,1,1;1,1,1,0,0,0,0,0;1,2,3,1,2,3,4,5"--scroll S(2,4)
R=QQ[x_1..x_8]
G4ti2 = toList flatten entries gens toBinomial(toricGraver(AS),R)
assert(#G4ti2 == 82)
Gtrue=toList flatten entries gens toBinomial(matrix" 1,-2,1,0,0,0,0,0;1,-1,0,-1,1,0,0,0;2,-2,0,-1,0,1,0,0;3,-3,0,-1,0,0,1,0;4,-4,0,-1,0,0,0,1;3,-3,0,0,-1,0,0,1;2,-2,0,0,0,-1,0,1;1,-1,0,0,0,0,-1,1;2,-2,0,0,-1,0,1,0;1,-1,0,0,0,-1,1,0;1,-1,0,0,-1,1,0,0;0,1,-1,-1,1,0,0,0;0,1,-1,0,0,-1,1,0;0,1,-1,0,0,0,-1,1;0,1,-1,0,-1,1,0,0;1,0,-1,-1,0,1,0,0;1,0,-1,0,-1,0,1,0;1,0,-1,0,0,-1,0,1;2,-1,-1,-1,0,0,1,0;2,-1,-1,0,-1,0,0,1;3,-2,-1,-1,0,0,0,1;0,2,-2,0,-1,0,1,0;1,1,-2,-1,0,0,1,0;0,2,-2,-1,0,1,0,0;2,0,-2,-1,0,0,0,1;0,2,-2,0,0,-1,0,1;1,1,-2,0,-1,0,0,1;0,0,0,1,-1,-1,1,0;0,0,0,1,-1,0,-1,1;0,0,0,1,-2,1,0,0;1,-1,0,1,-2,0,1,0;1,-1,0,1,-1,-1,0,1;2,-2,0,1,-2,0,0,1;0,0,0,0,0,1,-2,1;0,0,0,0,1,-2,1,0;1,-1,0,-1,0,2,-1,0;0,0,0,0,1,-1,-1,1;1,-1,0,-1,0,1,1,-1;1,-1,0,0,-1,0,2,-1;2,-2,0,-1,0,0,2,-1;1,-1,0,0,1,-2,0,1;0,0,0,1,0,-2,0,1;0,1,-1,0,1,-2,0,1;0,1,-1,-1,0,1,1,-1;0,1,-1,-1,0,2,-1,0;1,0,-1,-1,0,0,2,-1;0,1,-1,0,-1,0,2,-1;0,1,-1,1,-1,-1,0,1;0,1,-1,1,-2,0,1,0;1,0,-1,1,-2,0,0,1;0,3,-3,-1,0,0,1,0;1,2,-3,-1,0,0,0,1;0,3,-3,0,-1,0,0,1;0,2,-2,1,-2,0,0,1;0,2,-2,-1,0,0,2,-1;0,4,-4,-1,0,0,0,1;0,0,0,1,-2,0,2,-1;0,0,0,2,-2,-1,0,1;0,0,0,2,-3,0,1,0;1,-1,0,2,-3,0,0,1;0,0,0,1,0,-3,2,0;0,0,0,1,0,-1,-2,2;1,-1,0,-1,0,0,3,-2;0,0,0,0,1,0,-3,2;0,0,0,0,2,-3,0,1;0,1,-1,-1,0,0,3,-2;0,1,-1,2,-3,0,0,1;0,0,0,3,-4,0,0,1;0,0,0,1,0,0,-4,3;1,0,-1,0,-1,1,-1,1;1,0,-1,0,-2,2,0,0;1,0,-1,-1,1,-1,1,0;1,0,-1,-1,1,0,-1,1;1,0,-1,-2,2,0,0,0;1,0,-1,0,0,-2,2,0;1,0,-1,0,0,0,-2,2;2,0,-2,0,-2,1,0,1;2,0,-2,-2,1,0,1,0;2,0,-2,-1,0,-1,2,0;2,0,-2,0,-1,0,-1,2;3,0,-3,-2,0,0,2,0;3,0,-3,0,-2,0,0,2" ,R)
apply(0..#Gtrue-1, j-> assert(isSubset({Gtrue_j},G4ti2)) ) -- checking 4ti2 output against by hand input!!
///
end
restart
--load "4ti2.m2"
installPackage ("FourTiTwo", RemakeAllDocumentation => true, UserMode=>true)
installPackage("FourTiTwo",UserMode=>true,DebuggingMode => true)
viewHelp FourTiTwo
check FourTiTwo
debug FourTiTwo
A = matrix{{1,1,1,1},{0,1,2,3}}
A = matrix{{1,1,1,1},{0,1,3,4}}
B = syz A
time toricMarkov A
A
toricMarkov(A, InputType => "lattice")
R = QQ[a..d]
time toricGroebner(A)
toBinomial(transpose B, R)
toricCircuits(A)
H = hilbertBasis(A)
hilbertBasis(transpose B)
toBinomial(H,QQ[x,y])
toricGraver(A)
A
toricMarkov(A)
7 9
A = matrix"
1,1,1,-1,-1,-1, 0, 0, 0;
1,1,1, 0, 0, 0,-1,-1,-1;
0,1,1,-1, 0, 0,-1, 0, 0;
1,0,1, 0,-1, 0, 0,-1, 0;
1,1,0, 0, 0,-1, 0, 0,-1;
0,1,1, 0,-1, 0, 0, 0,-1;
1,1,0, 0,-1, 0,-1, 0, 0"
transpose A
toricMarkov transpose A
hilbertBasis transpose A
toricGraver transpose A
toricCircuits transpose A
27 27
A = matrix"
1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0;
0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0;
0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0;
0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0;
0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0;
0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0;
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0;
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1;
1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1;
1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1"
toricMarkov A
R = QQ[x_1..x_27]
toricMarkov(A,R)
toricGroebner(A,R)
gens gb oo
I = toBinomial(matrix{{}}, QQ[x])
gens I
gens gb I
-- Notes from Mike talking with Peter Malkin, 4/21/09
in 1.3.2 (and in 1.3.1):
These routines use the structure below:
groebner, markov,
hilbert, graver, zsolve
rays, circuits, qsolve
also: minimise, walk, normalform
a.mat: m by n
a.rel: 1 by m: symbols: >, =, < (means: >= 0, == 0, <= 0)
a.sign: 1 by n matrix: 0,1,-1,2
a.sign: 0: x_i unrestricted in sign
1: x_i >= 0
-1: x_i <= 0.
2: x_i is a Graver component
a.mat, a.rel, a.sign.
groebner, markov, zsolve: also can give a.rhs (1 x n matrix).
groebner does this:
Ax >= 0, x>=0.
Ax-Iy = 0, x >= 0, y >= 0.
doc on main page of 4ti2 web site: manual, and the slides.
.rhs doesn't work for qsolve though, possibly.
for hilbert, graver, zsolve, have the following filter:
.ub, .lb can be used to provide upper and lower bounds (lower only for Graver components, or for <= vars).
install glpk first, and make sure gmp is visible.
./configure --with-gmp=.... --with-glpk=....
call the different routines as: -p32, -p64, -parb
tests are in
4ti2-1.3.2/test
email Peter if I have more questions
4ti2 google group: joined.
glpk:open source linear programming
|