1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
newPackage(
"GroebnerWalk",
Version => "1.0.0",
Date => "November 17, 2017",
Authors => {{Name => "Dylan Peifer",
Email => "djp282@cornell.edu",
HomePage => "https://www.math.cornell.edu/~djp282"}},
Keywords => {"Groebner Basis Algorithms"},
Headline => "Groebner bases via the Groebner walk"
)
-- Copyright 2017 Dylan Peifer
-- You may redistribute this file under the terms of the GNU General Public
-- License as published by the Free Software Foundation, either version 2 of
-- the License, or any later version.
export {"groebnerWalk", "setWalkTrace", "getWalkTrace"}
debug Core -- for monomialOrderMatrix and rawGBGetParallelLeadTerms
-------------------------------------------------------------------------------
--- top level functions
-------------------------------------------------------------------------------
groebnerWalk = method(Options => {Strategy => Standard})
groebnerWalk(Ideal, Ring) := GroebnerBasis => opts -> (I, R) -> (
-- I = an ideal
-- R = a polynomial ring
-- returns Groebner basis of the ideal I in the ring R
groebnerWalk(gb I, R, Strategy => opts.Strategy)
)
groebnerWalk(GroebnerBasis, Ring) := GroebnerBasis => opts -> (G, R) -> (
-- G = a Groebner basis of an ideal
-- R = a polynomial ring
-- returns Groebner basis of the ideal generated by G in the ring R
if opts.Strategy === Standard then
standardWalk(G, R)
else if opts.Strategy === Generic then
genericWalk(G, R)
else
error "invalid strategy"
)
walkTrace := 0;
-- value that determines how much extra information to print
-- level 0: none
-- level 1: total conversions
-- level 2: vector and size of Groebner basis at each conversion
-- level 3: face codim at each conversion
setWalkTrace = method()
setWalkTrace(ZZ) := ZZ => (n) -> (
-- n = an integer
-- sets walkTrace to n
if n > 2 then << "Warning: computations are much slower with walkTrace > 2"
<< endl;
walkTrace = n
)
getWalkTrace = method()
installMethod(getWalkTrace, () -> walkTrace)
-- returns the value of walkTrace
-------------------------------------------------------------------------------
--- standard walk
-------------------------------------------------------------------------------
standardWalk = method()
standardWalk(GroebnerBasis, Ring) := GroebnerBasis => (G, Rt) -> (
-- G = a Groebner basis
-- Rt = a polynomial ring
-- returns Groebner basis of the ideal generated by G in the ring Rt
R := ring G;
w := weightVector R; -- start weight vector
wt := weightVector Rt; -- target weight vector
count := 0; -- count of performed conversions
-- initialization (transfer G to ring with monomial order w, wt, grevlex)
if walkTrace > 1 then << "Conversion Number: " << count+1 << endl
<< "Weight Vector: " << w << endl;
R = newRing(R, MonomialOrder=>{Weights=>w, Weights=>wt});
G = standardStep(G, R);
count = count + 1;
if walkTrace > 1 then << "Size of new Groebner Basis: "
<< numgens ideal gens G << endl << endl;
-- step until reaching wt
while w != wt do (
w = nextW(G, w, wt);
if walkTrace > 1 then << "Conversion Number: " << count+1 << endl
<< "Weight Vector: " << w << endl;
R = newRing(R, MonomialOrder=>{Weights=>w, Weights=>wt});
G = standardStep(G, R);
count = count + 1;
if walkTrace > 1 then << "Size of new Groebner Basis: "
<< numgens ideal gens G << endl << endl;
);
-- finalization (transfer G from monomial order wt, grevlex to order in Rt)
if walkTrace > 1 then << "Conversion Number: " << count+1 << endl
<< "Weight Vector: " << w << endl;
R = newRing(Rt, MonomialOrder=>{Weights=>wt, (options Rt).MonomialOrder});
G = standardStep(G, R);
count = count + 1;
if walkTrace > 1 then << "Size of new Groebner Basis: "
<< numgens ideal gens G << endl << endl;
if walkTrace > 0 then << "Total Conversions: " << count << endl;
-- correct for forceGB not removing content over QQ
if coefficientRing Rt === QQ then (
polys := first entries gens G;
polys = apply(polys, f -> f/(gcd first entries gens content f));
forceGB sub(matrix {polys}, Rt)
)
else
forceGB sub(gens G, Rt)
)
standardStep = method()
standardStep(GroebnerBasis, Ring) := GroebnerBasis => (G, R) -> (
-- G = a Groebner basis over a ring with order compatible with w
-- R = a ring with monomial order starting with weight w
-- returns Groebner basis of the ideal generated by G in the ring R
-- drop to gens of gb of initial ideal in old ring
oldInG := leadTerm(1, sub(gens G, R));
if walkTrace > 2 then << "Face Codimension: " << faceCodimension oldInG
<< endl;
-- cross to gens of gb of initial ideal in new ring
newInG := gens gb ideal oldInG;
-- lift to gb of ideal in new ring
H := sub(newInG, ring G);
forceGB sub(H - H % G, R)
)
nextW = method()
nextW(GroebnerBasis, List, List) := List => (G, w, wt) -> (
-- G = a Groebner basis
-- w = a weight vector in the cone of G
-- wt = a weight vector
-- returns first weight vector on the line from w to wt in a wall of the
-- cone of G, scaled to have integer components
V := unique boundingVectors(G);
tvals := for v in V list (
if dot(wt, v) >= 0 then continue;
dot(w, v)/(dot(w, v) - dot(wt, v))
);
t := min(1, min tvals);
w = (1-t)*w + t*wt;
w = w / (gcd w);
apply(w, x -> lift(x, ZZ))
)
-------------------------------------------------------------------------------
--- generic walk
-------------------------------------------------------------------------------
genericWalk = method()
genericWalk(GroebnerBasis, Ring) := GroebnerBasis => (G, R) -> (
-- G = a Groebner basis
-- R = a polynomial ring
-- returns Groebner basis of the ideal generated by G in the ring R
S := weightVectors ring G; -- start order
T := weightVectors R; -- target order
count := 0; -- count of performed conversions
-- find first bounding vector
v := nextV(G, {}, S, T);
-- step until receiving done signal {} from nextV
while v != {} do (
if walkTrace > 1 then << "Conversion Number: " << count+1 << endl
<< "Bounding Vector: " << v << endl;
G = genericStep(G, v, R);
count = count + 1;
if walkTrace > 1 then << "Size of new Groebner Basis: "
<< numgens ideal gens G << endl << endl;
v = nextV(G, v, S, T);
);
-- finalization (transfer G to order in R)
if walkTrace > 0 then << "Total Conversions: " << count << endl;
-- correct for forceGB not removing content over QQ
if coefficientRing R === QQ then (
polys := first entries gens G;
polys = apply(polys, f -> f/(gcd first entries gens content f));
forceGB sub(matrix {polys}, R)
)
else
forceGB sub(gens G, R)
)
genericStep = method()
genericStep(GroebnerBasis, List, Ring) := GroebnerBasis => (G, v, R) -> (
-- G = a Groebner basis
-- v = bounding vector for wall of cone of G
-- R = ring with target monomial order
-- returns Groebner basis in next cone on generic path to R
-- drop to gens of initial ideal at v
inI := parallelLeadTerms(G, v);
if walkTrace > 2 then << "Face Codimension: " << faceCodimension inI
<< endl;
-- compute gb of initial ideal over target order
H := gb ideal sub(inI, R);
-- lift to new gb of ideal
M := sub(gens H, ring G);
markedGB(sub(leadTerm H, ring G), M - M % G)
)
nextV = method()
nextV(GroebnerBasis, List, List, List) := List => (G, v, S, T) -> (
-- G = a Groebner basis
-- v = a bounding vector of cone of G
-- S = starting weight vectors on generic walk
-- T = target weight vectors on generic walk
-- returns next bounding vector on generic path from S to T
V := unique select(boundingVectors(G), w -> any(w, i -> i < 0));
-- select bounding vectors such that 0 <_S w
V = select(V, w -> (for i from 0 to #S-1 do (
a := dot(S#i, w);
if a == 0 then continue;
return a > 0;
);
return false;
));
-- select bounding vectors such that w <_T 0
V = select(V, w -> (for i from 0 to #T-1 do (
a := dot(T#i, w);
if a == 0 then continue;
return a < 0;
);
return false;
));
-- except in first step, select bounding vectors greater than current v
if #v != 0 then V = select(V, w -> isFacetLessThan(v, w, S, T));
-- if no bounding vectors remain, return {} to signal done
if #V == 0 then return {};
-- find minimum v and return it
minv := V#0;
for i from 1 to #V-1 do (
if isFacetLessThan(V#i, minv, S, T) then minv = V#i;
);
minv
)
-------------------------------------------------------------------------------
--- auxiliary functions
-------------------------------------------------------------------------------
boundingVectors = method()
boundingVectors(GroebnerBasis) := List => (G) -> (
-- G = a Groebner basis
-- returns list of vectors bounding the cone of G
H := first entries gens G;
inH := first entries leadTerm G;
flatten apply(#inH, i -> (
g := H#i;
lt := inH#i;
m := first exponents lt;
apply(exponents(g-lt), e -> m-e)))
)
weightVectors = method()
weightVectors(Ring) := List => (R) -> (
-- R = a polynomial ring
-- returns a list of weight vectors giving the monomial order of R
M := monomialOrderMatrix R;
n := #(options R).Variables; -- size for weight vectors
head := entries M_0;
tail := if M_1 === Lex then
for i from 0 to n-1 list esubi(i, n)
else if M_1 === RevLex then
for i from 0 to n-1 list -esubi(n-i-1, n)
else
error "invalid monomial order";
head | tail
)
weightVector = method()
weightVector(Ring) := List => (R) -> (
-- R = a polynomial ring
-- returns an initial weight vector for the monomial order of R
first weightVectors R
)
parallelLeadTerms = method()
parallelLeadTerms(GroebnerBasis, List) := Matrix => (G, v) -> (
-- G = a Groebner basis
-- v = a bounding vector
-- returns lead terms of G with following terms that have exponent vector
-- which differs from lead by a multiple of v
map(ring G, rawGBGetParallelLeadTerms(raw G, v))
)
isFacetLessThan = method()
isFacetLessThan(List, List, List, List) := Boolean => (u, v, S, T) -> (
-- u = bounding vector as a list
-- v = bounding vector as a list
-- S = list of weight vectors for the starting term order
-- T = list of weight vectors for the ending term order
-- returns if u <= v under the facet preorder
-- compute and compare (i,j) entries of Tuv^TS^T and Tvu^TS^T
for i from 0 to #T-1 do (
for j from 0 to #S-1 do (
TuvS := dot(T#i, u) * dot(S#j, v);
TvuS := dot(T#i, v) * dot(S#j, u);
if TuvS == TvuS then continue;
return TuvS < TvuS;
);
);
return false; -- all comparisons were equal
)
faceCodimension = method()
faceCodimension(Matrix) := ZZ => (H) -> (
-- H = generators of inI as a matrix (like gens gb returns)
-- returns codimension of the face containing the weight vector that gives
-- inI
p := flatten entries H;
V := flatten apply(p, f -> apply(exponents f, m -> m - first exponents f));
rank matrix V
)
esubi = method()
esubi(ZZ, ZZ) := List => (i, n) -> (
-- i = an integer
-- n = an integer
-- returns a list of length n with n-1 zeroes and 1 one in the ith position
toList(i:0) | {1} | toList(n-i-1:0)
)
dot = method()
dot(List, List) := ZZ => (v, w) -> (
-- v = a vector as a list
-- w = a vector as a list
-- returns the dot product of v and w
sum(apply(#v, i -> v#i * w#i))
)
-------------------------------------------------------------------------------
--- documentation
-------------------------------------------------------------------------------
beginDocumentation()
doc ///
Key
GroebnerWalk
Headline
Compute Groebner bases via the Groebner walk
Description
Text
The Groebner walk is a Groebner basis conversion algorithm. This means it
takes a Groebner basis of an ideal with respect to one monomial order and
changes it into a Groebner basis of the same ideal over a different
monomial order. Conversion algorithms can be useful since sometimes when a
Groebner basis over a difficult monomial order (such as lexicographic or an
elimination order) is desired, it can be faster to compute a Groebner basis
directly over an easier order (such as graded reverse lexicographic) and
then convert rather than computing directly in the original order. Other
examples of conversion algorithms include FGLM and Hilbert-driven
Buchberger.
The Groebner walk performs conversion by traveling through the Groebner
fan. The Groebner basis is the same for all vectors inside a cone of the
fan, and when crossing a face into a new cone a (hopefully small)
adjustment of the Groebner basis is all that must be computed.
Further background and details can be found in the following resources:
Cox, Little, O'Shea - Using Algebraic Geometry (2005)
Amrhein, Gloor, Kuchlin - On the Walk (1997)
Collart, Kalkbrenner, Mall - Converting Bases with the Groebner Walk (1997)
Fukuda, Jensen, Lauritzen, Thomas - The Generic Grobner Walk (2007)
Tran - A Fast Algorithm for Grobner Basis Conversion and its Applications
(2000)
In Macaulay2, monomial orders must be given as options to rings. For
example, the following ideal has monomial order given by first using a
weight vector and then breaking ties with graded reverse lexicographic.
Example
R1 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{1,1,1,0,0}];
I1 = ideal(u + u^2 - 2*v - 2*u^2*v + 2*u*v^2 - x,
-6*u + 2*v + v^2 - 5*v^3 + 2*u*v^2 - 4*u^2*v^2 - y,
-2 + 2*u^2 + 6*v - 3*u^2*v^2 - z);
Text
If we want a Groebner basis of I with respect to the monomial order
given by using a different weight vector and then graded reverse
lexicographic we could substitute and compute directly,
Example
R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}];
I2 = sub(I1, R2);
elapsedTime gb I2
Text
but it is faster to compute directly in the first order and then use the
Groebner walk.
Example
elapsedTime groebnerWalk(gb I1, R2)
Caveat
The target ring must be the same ring as the ring of the starting ideal,
except with different monomial order. The ring must be a polynomial ring
over a field.
SeeAlso
groebnerBasis
///
doc ///
Key
groebnerWalk
(groebnerWalk, GroebnerBasis, Ring)
(groebnerWalk, Ideal, Ring)
Headline
convert a Groebner basis
Usage
H = groebnerWalk(G, R)
H = groebnerWalk(I, R)
Inputs
G: GroebnerBasis
the starting Groebner basis
I: Ideal
the starting ideal
R: Ring
a ring with the target monomial order
Outputs
H: GroebnerBasis
the new Groebner basis in the target monomial order
Description
Text
The Groebner walk takes a Groebner basis of an ideal with respect to one
monomial order and changes it into a Groebner basis of the same ideal over
a different monomial order. The initial order is given by the ring of G
and the target order is the order in R. When given an ideal I as input a
Groebner basis of I in the ring of I is initially computed directly, and
then this Groebner basis is converted into a Groebner basis in the ring R.
Example
KK = ZZ/32003;
R1 = KK[x,y,z,u,v, MonomialOrder=>Eliminate 3];
I1 = ideal(3 - 2*u + 2*u^2 - 2*u^3 - v + u*v + 2*u^2*v^3 - x,
6*u + 5*u^2 - u^3 + v + u*v + v^2 - y,
-2 + 3*u - u*v + 2*u*v^2 - z);
R2 = KK[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}];
groebnerWalk(I1, R2)
Caveat
The target ring R must be the same ring as the ring of G or I, except with
different monomial order. R must be a polynomial ring over a field.
SeeAlso
GroebnerWalk
setWalkTrace
getWalkTrace
groebnerBasis
///
doc ///
Key
[groebnerWalk, Strategy]
Headline
specify the algorithm for groebnerWalk
Usage
H = groebnerWalk(G, R, Strategy => Generic)
Description
Text
Choose which algorithm to use for the Groebner walk. Options are Standard
for the original algorithm of Collart, Kalkbrener, and Mall and Generic
for the generic walk of Fukuda, Jensen, Lauritzen, and Thomas. The default
option is Standard.
Example
KK = ZZ/32003;
R1 = KK[x,y,z,u,v, MonomialOrder=>Eliminate 3];
I1 = ideal(3 - 2*u + 2*u^2 - 2*u^3 - v + u*v + 2*u^2*v^3 - x,
6*u + 5*u^2 - u^3 + v + u*v + v^2 - y,
-2 + 3*u - u*v + 2*u*v^2 - z);
R2 = KK[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}];
groebnerWalk(I1, R2, Strategy=>Generic)
SeeAlso
GroebnerWalk
groebnerWalk
///
doc ///
Key
setWalkTrace
(setWalkTrace, ZZ)
Headline
set value of walkTrace
Usage
setWalkTrace(n)
Inputs
n: ZZ
the desired value of walkTrace
Description
Text
The value of walkTrace determines how much additional information is
printed during a call to @TO groebnerWalk@. The function @TO setWalkTrace@
allows the user to change the value of walkTrace.
Levels of walkTrace are as follows:
Level 0: No additional information is printed. This is the default level.
Level 1: The total number of conversions performed during the algorithm is
printed at the end of the computation. Conversions are sometimes done in
initialization and finalization at the start and end of the path, and
otherwise happen at faces in the Groebner fan.
Level 2: All Level 1 information is printed, and the current vector and
size of the Groebner basis are printed at each conversion step. Since
information is printed at each conversion, this level is helpful for
verifying that the computation is proceeding and noticing where the
algorithm gets stuck.
Level 3: All Level 2 information is printed, and the codimension of the
face in the Groebner fan where the conversion is taking place is printed
at each conversion. Note that running on Level 3 will significantly slow
down the computation, and is not recommended except for testing.
For example, running the following code at the default Level 0 prints
nothing
Example
R1 = ZZ/32003[x,y,z, MonomialOrder=>Weights=>{1,10,100}];
I1 = ideal(y-x^2, z-x^3);
R2 = ZZ/32003[x,y,z, MonomialOrder=>Lex];
groebnerWalk(gb I1, R2)
Text
while running at Level 2 gives some conversion information.
Example
setWalkTrace 2;
groebnerWalk(gb I1, R2)
SeeAlso
groebnerWalk
getWalkTrace
///
doc ///
Key
getWalkTrace
Headline
get current value of walkTrace
Usage
n = getWalkTrace()
Outputs
n: ZZ
the current value of walkTrace
Description
Text
The value of walkTrace determines how much additional information is
printed during a call to @TO groebnerWalk@. The function @TO getWalkTrace@
allows the user to check the current value of walkTrace.
Levels of walkTrace are as follows:
Level 0: No additional information is printed. This is the default level.
Level 1: The total number of conversions performed during the algorithm is
printed at the end of the computation. Conversions are sometimes done in
initialization and finalization at the start and end of the path, and
otherwise happen at faces in the Groebner fan.
Level 2: All Level 1 information is printed, and the current vector and
size of the Groebner basis are printed at each conversion step. Since
information is printed at each conversion, this level is helpful for
verifying that the computation is proceeding and noticing where the
algorithm gets stuck.
Level 3: All Level 2 information is printed, and the codimension of the
face in the Groebner fan where the conversion is taking place is printed
at each conversion. Note that running on Level 3 will significantly slow
down the computation, and is not recommended except for testing.
Example
getWalkTrace()
setWalkTrace 2;
getWalkTrace()
SeeAlso
groebnerWalk
setWalkTrace
///
-------------------------------------------------------------------------------
--- tests
-------------------------------------------------------------------------------
TEST /// -- esubi and dot
debug GroebnerWalk
assert(esubi(1,4) == {0,1,0,0})
assert(esubi(0,3) == {1,0,0})
assert(dot({1,0,0}, {2,4,6}) == 2)
assert(dot({1,2,3}, {5,7,11}) == 52)
///
TEST /// -- weightVector and weightVectors
debug GroebnerWalk
R1 = QQ[x,y,z]
R2 = QQ[x,y,z, MonomialOrder=>Lex]
R3 = QQ[x,y,z, MonomialOrder=>{Weights=>{1,2,3}, Weights=>{0,2,1}}]
R4 = QQ[x,y,z, MonomialOrder=>Eliminate 2]
assert(weightVector R1 == {1,1,1})
assert(weightVector R2 == {1,0,0})
assert(weightVector R3 == {1,2,3})
assert(weightVector R4 == {1,1,0})
assert(weightVectors R1 == {{1,1,1}, {0,0,-1}, {0,-1,0}, {-1,0,0}})
assert(weightVectors R2 == {{1,0,0}, {0,1,0}, {0,0,1}})
assert(weightVectors R3 == {{1,2,3}, {0,2,1}, {1,1,1}, {0,0,-1}, {0,-1,0}, {-1,0,0}})
assert(weightVectors R4 == {{1,1,0}, {1,1,1}, {0,0,-1}, {0,-1,0}, {-1,0,0}})
///
TEST /// -- bounding vectors
debug GroebnerWalk
R = QQ[x,y,z]
I = ideal(y-x^2, z-x^3)
assert(boundingVectors gb I == {{-1,2,-1}, {1,1,-1}, {2,-1,0}})
R = QQ[x,y,z, MonomialOrder=>Lex]
I = sub(I, R)
assert(boundingVectors gb I == {{0,3,-2}, {1,-2,1}, {1,1,-1}, {2,-1,0}})
///
TEST /// -- parallelLeadTerms
debug GroebnerWalk
R = QQ[x,y,z]
I = ideal(x*y^4*z + y^2 + x*y, x^2*y^2*z + x + y^3*z, z^2 + z)
G = gb I
assert(parallelLeadTerms(G, {0,0,1}) == matrix {{z^2 + z, x*z + x, y^2*z + y^2,
x^3, y^4, x^2*y^2}})
assert(parallelLeadTerms(G, {2,-1,0}) == matrix {{z^2, x*z, y^2*z, x^3 + x*y,
y^4, x^2*y^2 + y^3}})
assert(parallelLeadTerms(G, {1,1,1}) == matrix {{z^2, x*z, y^2*z, x^3, y^4,
x^2*y^2}})
///
TEST /// -- isFacetLessThan
debug GroebnerWalk
S = {{1,0,0}, {0,1,0}, {0,0,1}}
T = {{1,1,1}, {0,2,-1}, {3,5,1}}
assert(isFacetLessThan({2,0,-1}, {1,2,3}, S, T))
assert(not isFacetLessThan({1,2,3}, {1,1,1}, S, T))
assert(not isFacetLessThan({4,5,6}, {8,10,12}, S, T))
assert(isFacetLessThan({0,4,5}, {0,2,3}, S, T))
///
TEST /// -- faceCodimension
debug GroebnerWalk
R = QQ[x,y,z]
assert(faceCodimension matrix {{y^2-x*z, x*y, x^2}} == 1)
assert(faceCodimension matrix {{y^2-x*z, x*y-z, x^2}} == 2)
assert(faceCodimension matrix {{y^2-x*z, x*y-z, x^2-y}} == 2)
assert(faceCodimension matrix {{x^2*y^2 - x*y^2 + y^2, x^3 - x^2}} == 1)
///
TEST /// -- standardWalk, standardStep, and nextW
debug GroebnerWalk
R1 = QQ[x,y,z, MonomialOrder=>Weights=>{1,1,10}]
I1 = ideal(y^2-x, z^3-x)
R2 = QQ[x,y,z, MonomialOrder=>Weights=>{10,1,1}]
w = weightVector R1
wt = weightVector R2
G = gb I1
w = nextW(G, w, wt)
assert(w == {2,1,9})
R = newRing(R1, MonomialOrder=>{Weights=>w, Weights=>wt})
G = standardStep(G, R)
assert(gens G == matrix {{x-y^2, z^3-y^2}})
w = nextW(G, w, wt)
assert(w == {10,1,1})
R = newRing(R1, MonomialOrder=>{Weights=>w, Weights=>wt})
G = standardStep(G, R)
assert(gens G == matrix {{z^3-y^2, x-y^2}})
assert(gens groebnerWalk(I1, R2) == gens gb sub(I1, R2))
///
TEST /// -- genericWalk, genericStep, and nextV
debug GroebnerWalk
R1 = QQ[x,y,z, MonomialOrder=>Weights=>{1,1,10}]
I1 = ideal(y^2-x, z^3-x)
R2 = QQ[x,y,z, MonomialOrder=>Weights=>{10,1,1}]
S = weightVectors R1
T = weightVectors R2
G = gb I1
v = nextV(G, {}, S, T)
assert(v == {-1,2,0})
G = genericStep(G, v, R2)
use R1
assert(gens G == matrix {{z^3-y^2, y^2-x}})
assert(gens groebnerWalk(I1, R2, Strategy => Generic) == gens gb sub(I1, R2))
///
TEST /// -- setWalkTrace and getWalkTrace
assert(getWalkTrace() == 0)
setWalkTrace 2
assert(getWalkTrace() == 2)
///
TEST /// -- groebnerWalk
-- no-check-flag #1563
R1 = QQ[x,y,z, MonomialOrder=>Weights=>{1,1,10}]
I1 = ideal(y^2-x, z^3-x)
R2 = QQ[x,y,z, MonomialOrder=>Weights=>{10,1,1}]
G1 = groebnerWalk(I1, R2)
G2 = groebnerWalk(I1, R2, Strategy=>Generic)
G3 = gb sub(I1, R2)
assert(gens G1 == gens G3)
assert(gens G2 == gens G3)
R1 = ZZ/32003[x,y,z, MonomialOrder=>Weights=>{1,1,10}]
I1 = ideal(y^2-x, z^3-x)
R2 = ZZ/32003[x,y,z, MonomialOrder=>Weights=>{10,1,1}]
G1 = groebnerWalk(I1, R2)
G2 = groebnerWalk(I1, R2, Strategy=>Generic)
G3 = gb sub(I1, R2)
assert(gens G1 == gens G3)
assert(gens G2 == gens G3)
R1 = ZZ/32003[x,y,z, MonomialOrder=>Weights=>{1,100,1}]
I1 = ideal(y^2-x, z^3-x)
R2 = ZZ/32003[x,y,z, MonomialOrder=>Lex]
G1 = groebnerWalk(I1, R2)
G2 = groebnerWalk(I1, R2, Strategy=>Generic)
G3 = gb sub(I1, R2)
assert(gens G1 == gens G3)
assert(gens G2 == gens G3)
R1 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{1,1,1,0,0}]
I1 = ideal(u + u^2 - 2*v - 2*u^2*v + 2*u*v^2 - x,
-6*u + 2*v + v^2 - 5*v^3 + 2*u*v^2 - 4*u^2*v^2 - y,
-2 + 2*u^2 + 6*v - 3*u^2*v^2 - z)
R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]
G1 = groebnerWalk(I1, R2)
G2 = groebnerWalk(I1, R2, Strategy => Generic)
G3 = gb sub(I1, R2)
assert(gens G1 == gens G3)
assert(gens G2 == gens G3)
///
end
|