File: GroebnerWalk.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (769 lines) | stat: -rw-r--r-- 25,906 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
newPackage(
        "GroebnerWalk",
        Version => "1.0.0",
        Date => "November 17, 2017",
        Authors => {{Name => "Dylan Peifer",
                     Email => "djp282@cornell.edu",
                     HomePage => "https://www.math.cornell.edu/~djp282"}},
	     Keywords => {"Groebner Basis Algorithms"},
        Headline => "Groebner bases via the Groebner walk"
        )

-- Copyright 2017 Dylan Peifer
-- You may redistribute this file under the terms of the GNU General Public
-- License as published by the Free Software Foundation, either version 2 of
-- the License, or any later version.

export {"groebnerWalk", "setWalkTrace", "getWalkTrace"}

debug Core -- for monomialOrderMatrix and rawGBGetParallelLeadTerms

-------------------------------------------------------------------------------
--- top level functions
-------------------------------------------------------------------------------
groebnerWalk = method(Options => {Strategy => Standard})
groebnerWalk(Ideal, Ring) := GroebnerBasis => opts -> (I, R) -> (
    -- I = an ideal
    -- R = a polynomial ring
    -- returns Groebner basis of the ideal I in the ring R

    groebnerWalk(gb I, R, Strategy => opts.Strategy)
    )
groebnerWalk(GroebnerBasis, Ring) := GroebnerBasis => opts -> (G, R) -> (
    -- G = a Groebner basis of an ideal
    -- R = a polynomial ring
    -- returns Groebner basis of the ideal generated by G in the ring R

    if opts.Strategy === Standard then
        standardWalk(G, R)
    else if opts.Strategy === Generic then
        genericWalk(G, R)
    else
        error "invalid strategy"
    )

walkTrace := 0;
    -- value that determines how much extra information to print
    -- level 0: none
    -- level 1: total conversions
    -- level 2: vector and size of Groebner basis at each conversion
    -- level 3: face codim at each conversion

setWalkTrace = method()
setWalkTrace(ZZ) := ZZ => (n) -> (
    -- n = an integer
    -- sets walkTrace to n
    if n > 2 then << "Warning: computations are much slower with walkTrace > 2"
                  << endl;
    walkTrace = n
    )

getWalkTrace = method()
installMethod(getWalkTrace, () -> walkTrace)
    -- returns the value of walkTrace

-------------------------------------------------------------------------------
--- standard walk
-------------------------------------------------------------------------------
standardWalk = method()
standardWalk(GroebnerBasis, Ring) := GroebnerBasis => (G, Rt) -> (
    -- G = a Groebner basis
    -- Rt = a polynomial ring
    -- returns Groebner basis of the ideal generated by G in the ring Rt

    R := ring G;
    w := weightVector R; -- start weight vector
    wt := weightVector Rt; -- target weight vector
    count := 0; -- count of performed conversions
    
    -- initialization (transfer G to ring with monomial order w, wt, grevlex)
    if walkTrace > 1 then << "Conversion Number: " << count+1 << endl
                          << "Weight Vector: " << w << endl;
    R = newRing(R, MonomialOrder=>{Weights=>w, Weights=>wt});
    G = standardStep(G, R);
    count = count + 1;
    if walkTrace > 1 then << "Size of new Groebner Basis: "
                          << numgens ideal gens G << endl << endl;

    -- step until reaching wt
    while w != wt do (
         w = nextW(G, w, wt);
        if walkTrace > 1 then << "Conversion Number: " << count+1 << endl
                              << "Weight Vector: " << w << endl;

        R = newRing(R, MonomialOrder=>{Weights=>w, Weights=>wt});
        G = standardStep(G, R);
        count = count + 1;
        if walkTrace > 1 then << "Size of new Groebner Basis: "
                              << numgens ideal gens G << endl << endl;
        );

    -- finalization (transfer G from monomial order wt, grevlex to order in Rt)
    if walkTrace > 1 then << "Conversion Number: " << count+1 << endl
                          << "Weight Vector: " << w << endl;
    R = newRing(Rt, MonomialOrder=>{Weights=>wt, (options Rt).MonomialOrder});
    G = standardStep(G, R);
    count = count + 1;
    if walkTrace > 1 then << "Size of new Groebner Basis: "
                          << numgens ideal gens G << endl << endl;

    if walkTrace > 0 then << "Total Conversions: " << count << endl;
    
    -- correct for forceGB not removing content over QQ
    if coefficientRing Rt === QQ then (
        polys := first entries gens G;
	polys = apply(polys, f -> f/(gcd first entries gens content f));
        forceGB sub(matrix {polys}, Rt)
	)
    else
        forceGB sub(gens G, Rt)
    )

standardStep = method()
standardStep(GroebnerBasis, Ring) := GroebnerBasis => (G, R) -> (
    -- G = a Groebner basis over a ring with order compatible with w
    -- R = a ring with monomial order starting with weight w
    -- returns Groebner basis of the ideal generated by G in the ring R

    -- drop to gens of gb of initial ideal in old ring
    oldInG := leadTerm(1, sub(gens G, R));
    if walkTrace > 2 then << "Face Codimension: " << faceCodimension oldInG
                          << endl;

    -- cross to gens of gb of initial ideal in new ring
    newInG := gens gb ideal oldInG;

    -- lift to gb of ideal in new ring
    H := sub(newInG, ring G);
    forceGB sub(H - H % G, R)
    )

nextW = method()
nextW(GroebnerBasis, List, List) := List => (G, w, wt) -> (
    -- G = a Groebner basis
    -- w = a weight vector in the cone of G
    -- wt = a weight vector
    -- returns first weight vector on the line from w to wt in a wall of the
    --     cone of G, scaled to have integer components

    V := unique boundingVectors(G);
    tvals := for v in V list (
	if dot(wt, v) >= 0 then continue;
	dot(w, v)/(dot(w, v) - dot(wt, v))
	);
    t := min(1, min tvals);
    w = (1-t)*w + t*wt;
    w = w / (gcd w);
    apply(w, x -> lift(x, ZZ))
    )

-------------------------------------------------------------------------------
--- generic walk
-------------------------------------------------------------------------------
genericWalk = method()
genericWalk(GroebnerBasis, Ring) := GroebnerBasis => (G, R) -> (
    -- G = a Groebner basis
    -- R = a polynomial ring
    -- returns Groebner basis of the ideal generated by G in the ring R

    S := weightVectors ring G; -- start order
    T := weightVectors R; -- target order
    count := 0; -- count of performed conversions

    -- find first bounding vector
    v := nextV(G, {}, S, T);

    -- step until receiving done signal {} from nextV
    while v != {} do (
        if walkTrace > 1 then << "Conversion Number: " << count+1 << endl
                          << "Bounding Vector: " << v << endl;

	G = genericStep(G, v, R);
	count = count + 1;
        if walkTrace > 1 then << "Size of new Groebner Basis: "
                              << numgens ideal gens G << endl << endl;

	v = nextV(G, v, S, T);
        );

    -- finalization (transfer G to order in R)
    if walkTrace > 0 then << "Total Conversions: " << count << endl;  

    -- correct for forceGB not removing content over QQ
    if coefficientRing R === QQ then (
        polys := first entries gens G;
	polys = apply(polys, f -> f/(gcd first entries gens content f));
        forceGB sub(matrix {polys}, R)
	)
    else
        forceGB sub(gens G, R)
    )

genericStep = method()
genericStep(GroebnerBasis, List, Ring) := GroebnerBasis => (G, v, R) -> (
    -- G = a Groebner basis
    -- v = bounding vector for wall of cone of G
    -- R = ring with target monomial order
    -- returns Groebner basis in next cone on generic path to R

    -- drop to gens of initial ideal at v
    inI := parallelLeadTerms(G, v);
    if walkTrace > 2 then << "Face Codimension: " << faceCodimension inI
                          << endl;

    -- compute gb of initial ideal over target order
    H := gb ideal sub(inI, R);

    -- lift to new gb of ideal
    M := sub(gens H, ring G);
    markedGB(sub(leadTerm H, ring G), M - M % G)
    )

nextV = method()
nextV(GroebnerBasis, List, List, List) := List => (G, v, S, T) -> (
    -- G = a Groebner basis
    -- v = a bounding vector of cone of G
    -- S = starting weight vectors on generic walk
    -- T = target weight vectors on generic walk
    -- returns next bounding vector on generic path from S to T

    V := unique select(boundingVectors(G), w -> any(w, i -> i < 0));

    -- select bounding vectors such that 0 <_S w
    V = select(V, w -> (for i from 0 to #S-1 do (
                            a := dot(S#i, w);
	                    if a == 0 then continue;
	                    return a > 0;
                            );
		        return false;
		       ));

    -- select bounding vectors such that w <_T 0
    V = select(V, w -> (for i from 0 to #T-1 do (
	                    a := dot(T#i, w);
			    if a == 0 then continue;
			    return a < 0;
                            );
		        return false;
		       ));

    -- except in first step, select bounding vectors greater than current v
    if #v != 0 then V = select(V, w -> isFacetLessThan(v, w, S, T));

    -- if no bounding vectors remain, return {} to signal done
    if #V == 0 then return {};

    -- find minimum v and return it
    minv := V#0;
    for i from 1 to #V-1 do (
    	if isFacetLessThan(V#i, minv, S, T) then minv = V#i;
	);
    minv
    )

-------------------------------------------------------------------------------
--- auxiliary functions
-------------------------------------------------------------------------------
boundingVectors = method()
boundingVectors(GroebnerBasis) := List => (G) -> (
    -- G = a Groebner basis
    -- returns list of vectors bounding the cone of G

    H := first entries gens G;
    inH := first entries leadTerm G;
    flatten apply(#inH, i -> (
        g := H#i; 
        lt := inH#i;
        m := first exponents lt;
        apply(exponents(g-lt), e -> m-e)))
    )

weightVectors = method()
weightVectors(Ring) := List => (R) -> (
    -- R = a polynomial ring
    -- returns a list of weight vectors giving the monomial order of R

    M := monomialOrderMatrix R;
    n := #(options R).Variables; -- size for weight vectors

    head := entries M_0;
    tail := if M_1 === Lex then
                for i from 0 to n-1 list esubi(i, n)
            else if M_1 === RevLex then
                for i from 0 to n-1 list -esubi(n-i-1, n)
	    else
	    	error "invalid monomial order";

    head | tail
    )

weightVector = method()
weightVector(Ring) := List => (R) -> (
    -- R = a polynomial ring
    -- returns an initial weight vector for the monomial order of R

    first weightVectors R
    )

parallelLeadTerms = method()
parallelLeadTerms(GroebnerBasis, List) := Matrix => (G, v) -> (
    -- G = a Groebner basis
    -- v = a bounding vector
    -- returns lead terms of G with following terms that have exponent vector
    --     which differs from lead by a multiple of v

    map(ring G, rawGBGetParallelLeadTerms(raw G, v))
    )

isFacetLessThan = method()
isFacetLessThan(List, List, List, List) := Boolean => (u, v, S, T) -> (
    -- u = bounding vector as a list
    -- v = bounding vector as a list
    -- S = list of weight vectors for the starting term order
    -- T = list of weight vectors for the ending term order
    -- returns if u <= v under the facet preorder

    -- compute and compare (i,j) entries of Tuv^TS^T and Tvu^TS^T
    for i from 0 to #T-1 do (
	for j from 0 to #S-1 do (
	    TuvS := dot(T#i, u) * dot(S#j, v);
	    TvuS := dot(T#i, v) * dot(S#j, u);
	    if TuvS == TvuS then continue;
	    return TuvS < TvuS;
	    );
	);
    return false; -- all comparisons were equal
    )

faceCodimension = method()
faceCodimension(Matrix) := ZZ => (H) -> (
    -- H = generators of inI as a matrix (like gens gb returns)
    -- returns codimension of the face containing the weight vector that gives
    --     inI

    p := flatten entries H;
    V := flatten apply(p, f -> apply(exponents f, m -> m - first exponents f));
    rank matrix V
    )

esubi = method()
esubi(ZZ, ZZ) := List => (i, n) -> (
    -- i = an integer
    -- n = an integer
    -- returns a list of length n with n-1 zeroes and 1 one in the ith position

    toList(i:0) | {1} | toList(n-i-1:0)
    )

dot = method()
dot(List, List) := ZZ => (v, w) -> (
    -- v = a vector as a list
    -- w = a vector as a list
    -- returns the dot product of v and w

    sum(apply(#v, i -> v#i * w#i))
    )

-------------------------------------------------------------------------------
--- documentation
-------------------------------------------------------------------------------
beginDocumentation()

doc ///
Key
  GroebnerWalk
Headline
  Compute Groebner bases via the Groebner walk
Description
  Text
    The Groebner walk is a Groebner basis conversion algorithm. This means it
    takes a Groebner basis of an ideal with respect to one monomial order and
    changes it into a Groebner basis of the same ideal over a different
    monomial order. Conversion algorithms can be useful since sometimes when a
    Groebner basis over a difficult monomial order (such as lexicographic or an
    elimination order) is desired, it can be faster to compute a Groebner basis
    directly over an easier order (such as graded reverse lexicographic) and
    then convert rather than computing directly in the original order. Other
    examples of conversion algorithms include FGLM and Hilbert-driven
    Buchberger.
    
    The Groebner walk performs conversion by traveling through the Groebner
    fan. The Groebner basis is the same for all vectors inside a cone of the
    fan, and when crossing a face into a new cone a (hopefully small)
    adjustment of the Groebner basis is all that must be computed.
    Further background and details can be found in the following resources:
    
    Cox, Little, O'Shea - Using Algebraic Geometry (2005)
    
    Amrhein, Gloor, Kuchlin - On the Walk (1997)
    
    Collart, Kalkbrenner, Mall - Converting Bases with the Groebner Walk (1997)
    
    Fukuda, Jensen, Lauritzen, Thomas - The Generic Grobner Walk (2007)
    
    Tran - A Fast Algorithm for Grobner Basis Conversion and its Applications
    (2000)
    
    In Macaulay2, monomial orders must be given as options to rings. For
    example, the following ideal has monomial order given by first using a
    weight vector and then breaking ties with graded reverse lexicographic.
  Example
    R1 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{1,1,1,0,0}];
    I1 = ideal(u + u^2 - 2*v - 2*u^2*v + 2*u*v^2 - x,
               -6*u + 2*v + v^2 - 5*v^3 + 2*u*v^2 - 4*u^2*v^2 - y,
	       -2 + 2*u^2 + 6*v - 3*u^2*v^2 - z);
  Text
    If we want a Groebner basis of I with respect to the monomial order
    given by using a different weight vector and then graded reverse
    lexicographic we could substitute and compute directly,
  Example
    R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}];
    I2 = sub(I1, R2);
    elapsedTime gb I2
  Text
    but it is faster to compute directly in the first order and then use the
    Groebner walk.
  Example
    elapsedTime groebnerWalk(gb I1, R2)
Caveat
  The target ring must be the same ring as the ring of the starting ideal,
  except with different monomial order. The ring must be a polynomial ring
  over a field.
SeeAlso
  groebnerBasis
///

doc ///
Key
  groebnerWalk
  (groebnerWalk, GroebnerBasis, Ring)
  (groebnerWalk, Ideal, Ring)
Headline
  convert a Groebner basis
Usage
  H = groebnerWalk(G, R)
  H = groebnerWalk(I, R)
Inputs
  G: GroebnerBasis
     the starting Groebner basis
  I: Ideal
     the starting ideal
  R: Ring
     a ring with the target monomial order
Outputs
  H: GroebnerBasis
     the new Groebner basis in the target monomial order
Description
  Text
    The Groebner walk takes a Groebner basis of an ideal with respect to one
    monomial order and changes it into a Groebner basis of the same ideal over
    a different monomial order. The initial order is given by the ring of G
    and the target order is the order in R. When given an ideal I as input a
    Groebner basis of I in the ring of I is initially computed directly, and
    then this Groebner basis is converted into a Groebner basis in the ring R.
  Example
    KK = ZZ/32003;
    R1 = KK[x,y,z,u,v, MonomialOrder=>Eliminate 3];
    I1 = ideal(3 - 2*u + 2*u^2 - 2*u^3 - v + u*v + 2*u^2*v^3 - x,
               6*u + 5*u^2 - u^3 + v + u*v + v^2 - y,
	       -2 + 3*u - u*v + 2*u*v^2 - z);
    R2 = KK[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}];
    groebnerWalk(I1, R2)
Caveat
  The target ring R must be the same ring as the ring of G or I, except with
  different monomial order. R must be a polynomial ring over a field.
SeeAlso
  GroebnerWalk
  setWalkTrace
  getWalkTrace
  groebnerBasis
///

doc ///
Key
  [groebnerWalk, Strategy]
Headline
  specify the algorithm for groebnerWalk
Usage
  H = groebnerWalk(G, R, Strategy => Generic)
Description
  Text
    Choose which algorithm to use for the Groebner walk. Options are Standard
    for the original algorithm of Collart, Kalkbrener, and Mall and Generic
    for the generic walk of Fukuda, Jensen, Lauritzen, and Thomas. The default
    option is Standard.
  Example
    KK = ZZ/32003;
    R1 = KK[x,y,z,u,v, MonomialOrder=>Eliminate 3];
    I1 = ideal(3 - 2*u + 2*u^2 - 2*u^3 - v + u*v + 2*u^2*v^3 - x,
               6*u + 5*u^2 - u^3 + v + u*v + v^2 - y,
	       -2 + 3*u - u*v + 2*u*v^2 - z);
    R2 = KK[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}];
    groebnerWalk(I1, R2, Strategy=>Generic)
SeeAlso
  GroebnerWalk
  groebnerWalk
///
    
doc ///
Key
  setWalkTrace
  (setWalkTrace, ZZ)
Headline
  set value of walkTrace
Usage
  setWalkTrace(n)
Inputs
  n: ZZ
     the desired value of walkTrace
Description
  Text
    The value of walkTrace determines how much additional information is
    printed during a call to @TO groebnerWalk@. The function @TO setWalkTrace@
    allows the user to change the value of walkTrace.
    
    Levels of walkTrace are as follows:
    
    Level 0: No additional information is printed. This is the default level.
    
    Level 1: The total number of conversions performed during the algorithm is
    printed at the end of the computation. Conversions are sometimes done in
    initialization and finalization at the start and end of the path, and
    otherwise happen at faces in the Groebner fan.
    
    Level 2: All Level 1 information is printed, and the current vector and
    size of the Groebner basis are printed at each conversion step. Since
    information is printed at each conversion, this level is helpful for
    verifying that the computation is proceeding and noticing where the
    algorithm gets stuck.
    
    Level 3: All Level 2 information is printed, and the codimension of the
    face in the Groebner fan where the conversion is taking place is printed
    at each conversion. Note that running on Level 3 will significantly slow
    down the computation, and is not recommended except for testing.

    For example, running the following code at the default Level 0 prints
    nothing
  Example
    R1 = ZZ/32003[x,y,z, MonomialOrder=>Weights=>{1,10,100}];
    I1 = ideal(y-x^2, z-x^3);
    R2 = ZZ/32003[x,y,z, MonomialOrder=>Lex];
    groebnerWalk(gb I1, R2)
  Text
    while running at Level 2 gives some conversion information.
  Example
    setWalkTrace 2;
    groebnerWalk(gb I1, R2)
SeeAlso
  groebnerWalk
  getWalkTrace
///

doc ///
Key
  getWalkTrace
Headline
  get current value of walkTrace
Usage
  n = getWalkTrace()
Outputs
  n: ZZ
     the current value of walkTrace
Description
  Text
    The value of walkTrace determines how much additional information is
    printed during a call to @TO groebnerWalk@. The function @TO getWalkTrace@
    allows the user to check the current value of walkTrace.
    
    Levels of walkTrace are as follows:
    
    Level 0: No additional information is printed. This is the default level.
    
    Level 1: The total number of conversions performed during the algorithm is
    printed at the end of the computation. Conversions are sometimes done in
    initialization and finalization at the start and end of the path, and
    otherwise happen at faces in the Groebner fan.
    
    Level 2: All Level 1 information is printed, and the current vector and
    size of the Groebner basis are printed at each conversion step. Since
    information is printed at each conversion, this level is helpful for
    verifying that the computation is proceeding and noticing where the
    algorithm gets stuck.
    
    Level 3: All Level 2 information is printed, and the codimension of the
    face in the Groebner fan where the conversion is taking place is printed
    at each conversion. Note that running on Level 3 will significantly slow
    down the computation, and is not recommended except for testing.
  Example
    getWalkTrace()
    setWalkTrace 2;
    getWalkTrace()
SeeAlso
  groebnerWalk
  setWalkTrace
///

-------------------------------------------------------------------------------
--- tests
-------------------------------------------------------------------------------
TEST /// -- esubi and dot
debug GroebnerWalk
assert(esubi(1,4) == {0,1,0,0})
assert(esubi(0,3) == {1,0,0})
assert(dot({1,0,0}, {2,4,6}) == 2)
assert(dot({1,2,3}, {5,7,11}) == 52)
///

TEST /// -- weightVector and weightVectors
debug GroebnerWalk
R1 = QQ[x,y,z]
R2 = QQ[x,y,z, MonomialOrder=>Lex]
R3 = QQ[x,y,z, MonomialOrder=>{Weights=>{1,2,3}, Weights=>{0,2,1}}]
R4 = QQ[x,y,z, MonomialOrder=>Eliminate 2]

assert(weightVector R1 == {1,1,1})
assert(weightVector R2 == {1,0,0})
assert(weightVector R3 == {1,2,3})
assert(weightVector R4 == {1,1,0})

assert(weightVectors R1 == {{1,1,1}, {0,0,-1}, {0,-1,0}, {-1,0,0}})
assert(weightVectors R2 == {{1,0,0}, {0,1,0}, {0,0,1}})
assert(weightVectors R3 == {{1,2,3}, {0,2,1}, {1,1,1}, {0,0,-1}, {0,-1,0}, {-1,0,0}})
assert(weightVectors R4 == {{1,1,0}, {1,1,1}, {0,0,-1}, {0,-1,0}, {-1,0,0}})
///

TEST /// -- bounding vectors
debug GroebnerWalk
R = QQ[x,y,z]
I = ideal(y-x^2, z-x^3)
assert(boundingVectors gb I == {{-1,2,-1}, {1,1,-1}, {2,-1,0}})

R = QQ[x,y,z, MonomialOrder=>Lex]
I = sub(I, R)
assert(boundingVectors gb I == {{0,3,-2}, {1,-2,1}, {1,1,-1}, {2,-1,0}})
///

TEST /// -- parallelLeadTerms
debug GroebnerWalk
R = QQ[x,y,z]
I = ideal(x*y^4*z + y^2 + x*y, x^2*y^2*z + x + y^3*z, z^2 + z)
G = gb I
assert(parallelLeadTerms(G, {0,0,1}) == matrix {{z^2 + z, x*z + x, y^2*z + y^2,
                                                 x^3, y^4, x^2*y^2}})
assert(parallelLeadTerms(G, {2,-1,0}) == matrix {{z^2, x*z, y^2*z, x^3 + x*y,
	    	    	    	    	    	  y^4, x^2*y^2 + y^3}})
assert(parallelLeadTerms(G, {1,1,1}) == matrix {{z^2, x*z, y^2*z, x^3, y^4,
	    	    	    	    	    	 x^2*y^2}})
///

TEST /// -- isFacetLessThan
debug GroebnerWalk
S = {{1,0,0}, {0,1,0}, {0,0,1}}
T = {{1,1,1}, {0,2,-1}, {3,5,1}}
assert(isFacetLessThan({2,0,-1}, {1,2,3}, S, T))
assert(not isFacetLessThan({1,2,3}, {1,1,1}, S, T))
assert(not isFacetLessThan({4,5,6}, {8,10,12}, S, T))
assert(isFacetLessThan({0,4,5}, {0,2,3}, S, T))
///

TEST /// -- faceCodimension
debug GroebnerWalk
R = QQ[x,y,z]
assert(faceCodimension matrix {{y^2-x*z, x*y, x^2}} == 1)
assert(faceCodimension matrix {{y^2-x*z, x*y-z, x^2}} == 2)
assert(faceCodimension matrix {{y^2-x*z, x*y-z, x^2-y}} == 2)
assert(faceCodimension matrix {{x^2*y^2 - x*y^2 + y^2, x^3 - x^2}} == 1)
///

TEST /// -- standardWalk, standardStep, and nextW
debug GroebnerWalk
R1 = QQ[x,y,z, MonomialOrder=>Weights=>{1,1,10}]
I1 = ideal(y^2-x, z^3-x)
R2 = QQ[x,y,z, MonomialOrder=>Weights=>{10,1,1}]

w = weightVector R1
wt = weightVector R2
G = gb I1

w = nextW(G, w, wt)
assert(w == {2,1,9})
R = newRing(R1, MonomialOrder=>{Weights=>w, Weights=>wt})
G = standardStep(G, R)
assert(gens G == matrix {{x-y^2, z^3-y^2}})

w = nextW(G, w, wt)
assert(w == {10,1,1})
R = newRing(R1, MonomialOrder=>{Weights=>w, Weights=>wt})
G = standardStep(G, R)
assert(gens G == matrix {{z^3-y^2, x-y^2}})

assert(gens groebnerWalk(I1, R2) == gens gb sub(I1, R2))
///

TEST /// -- genericWalk, genericStep, and nextV
debug GroebnerWalk
R1 = QQ[x,y,z, MonomialOrder=>Weights=>{1,1,10}]
I1 = ideal(y^2-x, z^3-x)
R2 = QQ[x,y,z, MonomialOrder=>Weights=>{10,1,1}]

S = weightVectors R1
T = weightVectors R2
G = gb I1

v = nextV(G, {}, S, T)
assert(v == {-1,2,0})
G = genericStep(G, v, R2)
use R1
assert(gens G == matrix {{z^3-y^2, y^2-x}})

assert(gens groebnerWalk(I1, R2, Strategy => Generic) == gens gb sub(I1, R2))
///

TEST /// -- setWalkTrace and getWalkTrace
assert(getWalkTrace() == 0)
setWalkTrace 2
assert(getWalkTrace() == 2)
///

TEST /// -- groebnerWalk
-- no-check-flag #1563
R1 = QQ[x,y,z, MonomialOrder=>Weights=>{1,1,10}]
I1 = ideal(y^2-x, z^3-x)
R2 = QQ[x,y,z, MonomialOrder=>Weights=>{10,1,1}]
G1 = groebnerWalk(I1, R2)
G2 = groebnerWalk(I1, R2, Strategy=>Generic)
G3 = gb sub(I1, R2)
assert(gens G1 == gens G3)
assert(gens G2 == gens G3)

R1 = ZZ/32003[x,y,z, MonomialOrder=>Weights=>{1,1,10}]
I1 = ideal(y^2-x, z^3-x)
R2 = ZZ/32003[x,y,z, MonomialOrder=>Weights=>{10,1,1}]
G1 = groebnerWalk(I1, R2)
G2 = groebnerWalk(I1, R2, Strategy=>Generic)
G3 = gb sub(I1, R2)
assert(gens G1 == gens G3)
assert(gens G2 == gens G3)

R1 = ZZ/32003[x,y,z, MonomialOrder=>Weights=>{1,100,1}]
I1 = ideal(y^2-x, z^3-x)
R2 = ZZ/32003[x,y,z, MonomialOrder=>Lex]
G1 = groebnerWalk(I1, R2)
G2 = groebnerWalk(I1, R2, Strategy=>Generic)
G3 = gb sub(I1, R2)
assert(gens G1 == gens G3)
assert(gens G2 == gens G3)

R1 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{1,1,1,0,0}]
I1 = ideal(u + u^2 - 2*v - 2*u^2*v + 2*u*v^2 - x,
           -6*u + 2*v + v^2 - 5*v^3 + 2*u*v^2 - 4*u^2*v^2 - y,
	   -2 + 2*u^2 + 6*v - 3*u^2*v^2 - z)
R2 = QQ[x,y,z,u,v, MonomialOrder=>Weights=>{0,0,0,1,1}]
G1 = groebnerWalk(I1, R2)
G2 = groebnerWalk(I1, R2, Strategy => Generic)
G3 = gb sub(I1, R2)
assert(gens G1 == gens G3)
assert(gens G2 == gens G3)
///

end