1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
-*
Copyright 2020, Luigi Ferraro, Federico Galetto,
Francesca Gandini, Hang Huang, Matthew Mastroeni, Xianglong Ni.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
*-
FiniteGroupAction = new Type of GroupAction
finiteAction = method()
finiteAction (List, PolynomialRing) := FiniteGroupAction => (G, R) -> (
if not isField coefficientRing R then (
error "finiteAction: Expected the second argument to be a polynomial ring over a field."
);
if any (G, g -> not instance(g, Matrix) or numRows g =!= numColumns g) then (
error "finiteAction: Expected the first argument to be a list of square matrices."
);
if (numRows first G) =!= dim R then (error "finiteAction: Expected the number of rows of each matrix to equal the number of variables in the polynomial ring.");
try (
gensG := apply(G, g -> sub(g, coefficientRing R))
)
else (
error "finiteAction: Expected a list of matrices over the coefficient field of the polynomial ring."
);
new FiniteGroupAction from {
cache => new CacheTable,
(symbol ring) => R,
(symbol generators) => gensG,
(symbol numgens) => #(gensG),
}
)
finiteAction (Matrix, PolynomialRing) := FiniteGroupAction => (g, R) -> finiteAction({g}, R)
net FiniteGroupAction := G -> (net G.ring)|" <- "|(net G.generators)
generators FiniteGroupAction := opts -> G -> G.generators
numgens FiniteGroupAction := ZZ => G -> G.numgens
-------------------------------------------
isAbelian = method()
isAbelian FiniteGroupAction := { } >> opts -> (cacheValue (symbol isAbelian)) (G -> runHooks(FiniteGroupAction, symbol isAbelian, G) )
addHook(FiniteGroupAction, symbol isAbelian, G -> break (
X := G.generators;
n := #X;
if n == 1 then(
true
)
else(
all(n - 1, i -> all(n - 1 - i, j -> (X#j)*(X#(n - 1 - i)) == (X#(n - 1 - i))*(X#j) ) )
)
))
generateGroup = method()
generateGroup FiniteGroupAction := { } >> opts -> (cacheValue (symbol generateGroup)) (G -> runHooks(FiniteGroupAction, symbol generateGroup, G) )
addHook(FiniteGroupAction, symbol generateGroup, G -> break (
m := numgens G;
n := dim G;
K := coefficientRing ring G;
X := gens G;
S := new MutableHashTable from apply(m, i ->
i => new MutableHashTable from {id_(K^n) => X#i}
);
A := new MutableHashTable from {id_(K^n) => {{}}}|apply(m, i -> X#i => {{i}});
toUpdate := X;
local h; local a;
while #toUpdate > 0 do(
h = first toUpdate;
a = first A#h;
scan(m, i -> (
g := h*(X#i);
a' := a|{i};
S#i#h = g;
if A#?g then (
A#g = (A#g)|{a'}
)
else (
A#g = {a'};
toUpdate = toUpdate|{g}
)
)
);
toUpdate = drop(toUpdate, 1);
);
A = hashTable pairs A;
S = hashTable apply(keys S, i -> i => hashTable pairs S#i);
(S, A)
))
-------------------------------------------
schreierGraph = method()
schreierGraph FiniteGroupAction := { } >> opts -> (cacheValue (symbol schreierGraph)) (G -> runHooks(FiniteGroupAction, symbol schreierGraph, G) )
addHook(FiniteGroupAction, symbol schreierGraph,
G -> break (generateGroup G)_0
)
-------------------------------------------
group = method()
group FiniteGroupAction := { } >> opts -> (cacheValue (symbol group)) (G -> runHooks(FiniteGroupAction, symbol group, G) )
addHook(FiniteGroupAction, symbol group,
G -> break keys first schreierGraph G
)
-------------------------------------------
words = method()
words FiniteGroupAction := { } >> opts -> (cacheValue (symbol words)) (G -> runHooks(FiniteGroupAction, symbol words, G) )
addHook(FiniteGroupAction, symbol words,
G -> break applyValues((generateGroup G)_1, val -> first val)
)
-------------------------------------------
relations FiniteGroupAction := { } >> opts -> (cacheValue (symbol relations)) (G -> runHooks(FiniteGroupAction, symbol relations, G) )
addHook(FiniteGroupAction, symbol relations, G -> break (
relators := values last generateGroup G;
W := apply(relators, r -> first r);
relators = flatten apply(#W, i -> apply(drop(relators#i, 1), a -> {W#i,a} ) );
relators = apply(relators, r -> (
w1 := first r;
w2 := last r;
j := 0;
while (j < #w1 and w1#j == w2#j) do j = j + 1;
{drop(w1, j), drop(w2, j)}
)
);
unique relators
))
-------------------------------------------
permutationMatrix = method()
permutationMatrix String := Matrix => s -> (
n := #s;
p := apply(n, i -> (
v := value(s#i);
if v <= 0 or v > n then (
error "permutationMatrix: Expected a string of positive integers
representing a permutation."
)
else v
)
);
if #(unique p) =!= n then (
error "permutationMatrix: Expected a string of distinct integers."
);
matrix apply(n, i ->
apply(n, j -> if p#j - 1 == i then 1 else 0)
)
)
permutationMatrix (ZZ, Array) := Matrix => (n, c) -> permutationMatrix(n, {c})
permutationMatrix (ZZ, List) := Matrix => (n, p) -> (
if n <= 0 then (error "permutationMatrix: Expected the first input to be a positive integer.");
if any(p, c -> not instance(c, Array) or any(c, i -> i <= 0 or i > n)) then (
error "permutationMatrix: Expected the second input to be a list of arrays
with integer entries between 1 and the first input."
);
if any(p, c -> #(unique toList c) =!= #c) then (error "permutationMatrix: Expected each sequence in
the list to have distinct entries.");
s := new MutableHashTable from apply(n, i -> i + 1 => i + 1);
scan(p, c -> (
k := #c;
u := hashTable pairs s;
scan(k, j -> (
if j < k - 1 then s#(c_j) = u#(c_(j+1))
else s#(c_j) = u#(c_0)
)
)
)
);
s = horizontalJoin apply(values s, i -> toString i);
permutationMatrix toString s
)
permutationMatrix Array := Matrix => c -> permutationMatrix(max c, c)
permutationMatrix List := Matrix => p -> permutationMatrix(max (p/max), p)
|