1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
|
-*
Copyright 2020, Luigi Ferraro, Federico Galetto,
Francesca Gandini, Hang Huang, Matthew Mastroeni, Xianglong Ni.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
*-
document {
Key => {action, (action, RingOfInvariants)},
Headline => "the group action that produced a ring of invariants",
Usage => "action S",
Inputs => {
"S" => RingOfInvariants => {"of the group action being returned"},
},
Outputs => {
GroupAction => {"the action that produced the ring of invariants in the input"}
},
"This function is provided by the package ", TO InvariantRing,".",
PARA {
"This example shows how to recover the action of a
torus that produced a certain ring of invariants.
Note other action types are possible and may produce
a different looking output."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"T = diagonalAction(matrix {{0,1,-1,1},{1,0,-1,-1}}, R)",
"S = R^T",
"action S"
},
}
document {
Key => (generators, RingOfInvariants),
Headline => "the generators for a ring of invariants",
Usage => "generators S, gens S",
Inputs => {
"S" => RingOfInvariants,
},
Outputs => {
List => {"of algebra generators for the ring of invariants"}
},
"This function is provided by the package ", TO InvariantRing,". ",
PARA {
"This method gets the algebra generators for a ring of invariants."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"W = matrix{{0,1,-1,1},{1,0,-1,-1}}",
"T = diagonalAction(W, R)",
"S = R^T",
"gens S",
},
}
document {
Key => {invariantRing,
(invariantRing, GroupAction),
(symbol ^, PolynomialRing, GroupAction),
(symbol ^, QuotientRing, LinearlyReductiveAction)},
Headline => "the ring of invariants of a group action",
Usage => "invariantRing G, R^G",
Inputs => {
"G" => GroupAction,
"R" => PolynomialRing => {"on which the group acts"},
Strategy => {"the strategy used to compute the invariant ring"}
},
Outputs => {
RingOfInvariants => {"the ring of invariants of the given group action"}
},
Caveat => {
"By default, the invariants of a diagonal group action are computed over an infinite
extension of the ground field specified by the user over which the action is defined.
Provided the action is defined, it is possible to compute invariants literally over
the specified ground field in prime characteristic using the option ",
TO UseCoefficientRing, "."
},
"This function is provided by the package ", TO InvariantRing,". ",
PARA {
"The following example defines an action of a
two-dimensional torus on a four-dimensional vector space
with a basis of weight vectors whose weights are
the columns of the input matrix."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"W = matrix{{0,1,-1,1},{1,0,-1,-1}}",
"T = diagonalAction(W, R)",
"S = invariantRing T",
},
PARA {
"The algebra generators for the ring of invariants are computed upon
initialization by the method ",
TO invariants,"."
},
PARA {
"Alternatively, we can use the following shortcut to construct
a ring of invariants."
},
EXAMPLE {
"S = R^T",
},
}
document {
Key => {
invariants
},
Headline => "computes the generating invariants of a group action",
Usage => "invariants G",
Inputs => {
"G" => GroupAction => {"a specific type of group action on a polynomial ring"},
Strategy => {"the strategy used to compute diagonal invariants, options are UsePolyhedra or UseNormaliz."}
},
Outputs => {
"L" => List => {"a minimal set of generating invariants for the group action"}
},
PARA {
"This function is provided by the package ", TO InvariantRing,
". This function can be used to compute the generating invariants of a diagonal group action, finite group action or linearly reductive group action.
It can also be used to compute a basis of a graded component of the invariant ring.
Below is a list of the many ways to use this function:"
},
UL{
{TO (invariants, FiniteGroupAction), ": computes the generating invariants of a finite group action"},
{TO (invariants, DiagonalAction), ": computes the generating invariants of a diagonal group action"},
{TO (invariants, LinearlyReductiveAction), ": computes the generating invariants of a linearly reductive action"},
{TO (invariants, FiniteGroupAction, ZZ)," or ", TO (invariants, FiniteGroupAction, List), ": computes a basis for graded component of the invariant ring of a finite group action"},
{TO (invariants, LinearlyReductiveAction, ZZ)," or ", TO (invariants, LinearlyReductiveAction, List), ": computes a basis for graded component of the invariant ring of a linearly reductive group action"},
},
SeeAlso => {
invariantRing,
isInvariant
},
Caveat => {"Some optional inputs are only relevant to
certain use cases of this method.
Please consult the documentation pages for the
different cases to learn which optional inputs
are used."}
}
document {
Key => {
(invariants, DiagonalAction)
},
Headline => "computes the generating invariants of a group action",
Usage => "invariants D",
Inputs => {
"D" => DiagonalAction => {"a diagonal action on a polynomial ring"},
Strategy => {"the strategy used to compute diagonal invariants, options are UsePolyhedra or UseNormaliz."}
},
Outputs => {
"L" => List => {"a minimal set of generating invariants for the group action"}
},
Caveat => {
"By default, the invariants are computed over an infinite extension of the ground field
specified by the user over which the action is defined. Provided the action is defined,
it is possible to compute invariants literally over the specified ground field in prime
characteristic using the option ", TO UseCoefficientRing, "."
},
PARA {
"This function is provided by the package ", TO InvariantRing,
". It implements an algorithm to compute a minimal set of generating
monomial invariants for a diagonal action of an abelian group",
TEX /// $(k^*)^r \times \mathbb{Z}/d_1 \times \cdots \times \mathbb{Z}/d_g$ ///,
" on a polynomial ring ",
TEX /// $R = k[x_1, \dots, x_n]$.///,
" Saying the action is diagonal means that ",
TEX /// $(t_1,\ldots,t_r) \in (k^*)^r$ ///,
" acts by",
TEX /// $$(t_1,\ldots,t_r) \cdot x_j = t_1^{w_{1,j}}\cdots t_r^{w_{r,j}} x_j$$ ///,
"for some integers ",
TEX /// $w_{i,j}$ ///,
" and the generators ",
TEX /// $u_1, \dots, u_g$ ///,
" of the cyclic abelian factors act by",
TEX /// $$u_i \cdot x_j = \zeta_i^{w_{r+i,j}} x_j$$ ///,
"for ",
TEX /// $\zeta_i$ ///,
" a primitive ",
TEX /// $d_i$///,
"-th root of unity. The integers",
TEX /// $w_{i,j}$ ///,
"comprise the weight matrix ", TT "W",
". In other words, the ",
TEX /// $j$ ///,
"-th column of ", TT "W",
" is the weight vector of",
TEX /// $x_j$. ///
},
PARA {
"The algorithm combines a modified version of an algorithm for tori
due to Derksen and Kemper which can be found in: "
},
UL {
{"Derksen, H. & Kemper, G. (2015).", EM "Computational Invariant Theory",
". Heidelberg: Springer. pp 159-164"}
},
PARA {
"together with an algorithm for finite abelian groups due to Gandini
which can be found in: "
},
UL {
{"Gandini, F. ", EM "Ideals of Subspace Arrangements",
". Thesis (Ph.D.)-University of Michigan. 2019. ISBN: 978-1392-76291-2. pp 29-34."}
},
PARA {
"Here is an example of a one-dimensional torus acting on a
two-dimensional vector space:"
},
EXAMPLE {
"R = QQ[x_1,x_2]",
"W = matrix{{1,-1}}",
"T = diagonalAction(W, R)",
"invariants T"
},
PARA {
"Here is an example of a product of two cyclic groups of
order 3 acting on a three-dimensional vector space:"
},
EXAMPLE {
"R = QQ[x_1..x_3]",
"d = {3,3}",
"W = matrix{{1,0,1},{0,1,1}}",
"A = diagonalAction(W, d, R)",
"invariants A"
},
PARA {
"Here is an example of a diagonal action by the product of
a two-dimensional torus with a cyclic group of order 3
acting on a two-dimensional vector space:"
},
EXAMPLE {
"R = QQ[x_1, x_2]",
"d = {3}",
"W1 = matrix{{1,-1}, {-1,1}}",
"W2 = matrix {{1,0}}",
"D = diagonalAction(W1, W2, d, R)",
"invariants D"
},
SeeAlso => {
diagonalAction,
invariantRing,
isInvariant
}
}
document {
Key => {
(invariants, FiniteGroupAction),
},
Headline => "computes the generating invariants of a group action",
Usage => "invariants G",
Inputs => {
"G" => FiniteGroupAction,
Strategy => {"the strategy used to compute diagonal invariants, options are UsePolyhedra or UseNormaliz."}
},
Outputs => {
"L" => List => {"a minimal set of generating invariants for the group action"}
},
PARA {
"This function is provided by the package ", TO InvariantRing, "."
},
PARA {
"It implements King's algorithm to compute a minimal
set of generating invariants for the action of a
finite group on a polynomial ring following Algorithm
3.8.2 in:"
},
UL {
{"Derksen, H. & Kemper, G. (2015).",
EM "Computational Invariant Theory",
". Heidelberg: Springer."}
},
PARA {
"The following example computes the invariants of the
alternating group on 4 elements."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"L = apply({\"2314\",\"2143\"},permutationMatrix);",
"A4 = finiteAction(L,R)",
"netList invariants A4"
},
SeeAlso => {
finiteAction,
invariantRing,
isInvariant
}
}
document {
Key => {
[invariants, DegreeBound], [invariantRing, DegreeBound], DegreeBound
},
Headline => "degree bound for invariants of finite groups",
Usage => "invariants G",
Inputs => {"G" => FiniteGroupAction},
Outputs => {
"L" => List => {"a minimal set of generating invariants for the group action"}
},
PARA {
"This function is provided by the package ", TO InvariantRing, "."
},
PARA {
"This optional argument allows the user to provide
an upper bound for the degree of the generating
invariants of a finite group action.
If no upper bound is provided, the order of the group
is used as an upper bound. Providing a smaller
upper bound may speed up the computation of invariants.
However, if the value provided is too small the
resulting list may not generate the ring of invariants."
},
PARA {
"The following example computes the invariants of the
symmetric group on 4 elements."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"L = apply({\"2134\",\"2341\"},permutationMatrix);",
"S4 = finiteAction(L,R)",
"elapsedTime invariants S4",
"elapsedTime invariants(S4,DegreeBound=>4)"
},
Caveat => {
"If the value provided for this option is too small,
then the output list does not generate
the entire ring of invariants. A warning message
is produced to notify the user of the issue."
},
SeeAlso => {
finiteAction,
invariantRing,
isInvariant
}
}
document {
Key => {
[invariants, UseCoefficientRing], [invariantRing, UseCoefficientRing], UseCoefficientRing
},
Headline => "option to compute invariants over the given coefficient ring",
Usage => "invariants G",
Inputs => {"D" => DiagonalAction},
Outputs => {
"L" => List => {"a minimal set of generating invariants for the group action"}
},
PARA {
"This function is provided by the package ", TO InvariantRing, "."
},
PARA {
"By default, the invariants of a diagonal action are
computed over an infinite extension of the coefficient
field specified by the user over which the action is defined.
Setting this optional argument to ", TO true, " will compute
the invariants of the action literally over the finite field
specified by the user in prime characteristic, provided the
action is defined."
},
PARA {
"The following example computes the invariants of a
1-dimensional torus action literally over the specified finite
field."
},
EXAMPLE {
"R = (GF 9)[x, y]",
"W = matrix {{7, -5}}",
"T = diagonalAction(W, R)",
"invariantRing(T,UseCoefficientRing => true)"
},
PARA {
"Over an infinite extension of the given ground field, there
are fewer invariants."
},
EXAMPLE {
"invariantRing T"
},
SeeAlso => {
diagonalAction,
invariants,
invariantRing
}
}
document {
Key => {
[invariants, UseLinearAlgebra], [invariantRing, UseLinearAlgebra], UseLinearAlgebra
},
Headline => "strategy for computing invariants of finite groups",
Usage => "invariants G",
Inputs => {"G" => FiniteGroupAction},
Outputs => {
"L" => List => {"a minimal set of generating invariants for the group action"}
},
PARA {
"This function is provided by the package ", TO InvariantRing, "."
},
PARA {
"This optional argument determines the strategy used to
compute generating invariants of a finite group action.
The default strategy uses the Reynolds operator, however
this may be slow for large groups. Setting this argument
to ", TO true, " uses the linear algebra method for
computing invariants of a given degree by calling ",
TO (invariants, FiniteGroupAction, ZZ), ". This may
provide a speedup at lower degrees, especially if the
user-provided generating set for the group is small."
},
PARA {
"The following example computes the invariants of the
symmetric group on 4 elements. Note that using
different strategies may lead to different sets of
generating invariants."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"L = apply({\"2134\",\"2341\"},permutationMatrix);",
"S4 = finiteAction(L,R)",
"elapsedTime invariants S4",
"elapsedTime invariants(S4,UseLinearAlgebra=>true)"
},
SeeAlso => {
finiteAction,
invariantRing,
isInvariant
}
}
document {
Key => {
(invariants, FiniteGroupAction, ZZ),
(invariants, FiniteGroupAction, List),
},
Headline => "basis for graded component of invariant ring",
Usage => "invariants(G,d)",
Inputs => {
"G" => FiniteGroupAction,
"d" => ZZ => {"a degree or multidegree"},
Strategy => {"the strategy used to compute diagonal invariants, options are UsePolyhedra or UseNormaliz."}
},
Outputs => {
"L" => List => {"an additive basis for a graded component of the ring of invariants"}
},
PARA {
"This function is provided by the package ", TO InvariantRing,
},
PARA {
"When called on a finite group action and
a (multi)degree, it computes an additive basis for the
invariants of the action in the given degree."},
PARA {
"This function
uses an implementation of the Linear Algebra Method
described in §3.1.1 of"
},
UL {
{"Derksen, H. & Kemper, G. (2015).", EM "Computational Invariant Theory",
". Heidelberg: Springer."}
},
PARA { "For example, consider the following
action of a dihedral group."
},
EXAMPLE {
"K=toField(QQ[a]/(a^2+a+1));",
"R = K[x,y]",
"A=matrix{{a,0},{0,a^2}};",
"B=sub(matrix{{0,1},{1,0}},K);",
"D6=finiteAction({A,B},R)",
"invariants(D6,20)",
},
PARA { "It is important to note that this implementation
uses the group generators provided by the user,
which can be recovered using ", TO (gens,FiniteGroupAction),
". To improve efficiency the user should provide
a generating set for the group that is as small as
possible."
},
SeeAlso => {
invariantRing,
isInvariant,
finiteAction
}
}
document {
Key => {
(invariants, LinearlyReductiveAction, ZZ),
(invariants, LinearlyReductiveAction, List)
},
Headline => "basis for graded component of invariant ring",
Usage => "invariants(V,d)",
Inputs => {
"V" => LinearlyReductiveAction,
"d" => ZZ => {"a degree or multidegree"},
Strategy => {"the strategy used to compute diagonal invariants, options are UsePolyhedra or UseNormaliz."}
},
Outputs => {
"L" => List => {"an additive basis for a graded component of the ring of invariants"}
},
PARA {
"This function is provided by the package ", TO InvariantRing,
},
PARA {
"When called on a linearly reductive group action and
a (multi)degree, it computes an additive basis for the
invariants of the action in the given degree."},
PARA {
"This function uses an implementation of Algorithm
4.5.1 in:"
},
UL {
{"Derksen, H. & Kemper, G. (2015).", EM "Computational Invariant Theory",
". Heidelberg: Springer."}
},
PARA {
"The following example examines the action of the
special linear group of degree 2 on the space of
binary quadrics. There is a single invariant of degree
2 but no invariant of degree 3."
},
EXAMPLE {
"S = QQ[a,b,c,d]",
"I = ideal(a*d - b*c - 1)",
"A = S[u,v]",
"M = transpose (map(S,A)) last coefficients sub(basis(2,A),{u=>a*u+b*v,v=>c*u+d*v})",
"R = QQ[x_1..x_3]",
"V = linearlyReductiveAction(I,M,R)",
"invariants(V,2)",
"invariants(V,3)",
},
SeeAlso => {
invariantRing,
isInvariant,
linearlyReductiveAction
}
}
document {
Key => {
(invariants, LinearlyReductiveAction)
},
Headline => "invariant generators of Hilbert ideal",
Usage => "invariants V",
Inputs => {
"V" => LinearlyReductiveAction,
Strategy => {"the strategy used to compute diagonal invariants, options are UsePolyhedra or UseNormaliz."}
},
Outputs => {
"L" => List => {"of invariants generating the Hilbert ideal"}
},
PARA {
"This function is provided by the package ", TO InvariantRing,
},
PARA {
"When called on a linearly reductive group action and
a degree, this function returns a list of generators for the
Hilbert ideal that are also invariant under the action.
This function computes the Hilbert ideal first using ",
TO "hilbertIdeal", " then finds invariant generators
degree by degree using ",
TO "invariants(LinearlyReductiveAction,ZZ)", ".",
},
PARA {
"The next example constructs a cyclic group of order 2
as a set of two affine points. Then it introduces an
action of this group on a polynomial ring in two variables
and computes the Hilbert ideal. The action permutes the
variables of the polynomial ring."
},
EXAMPLE {
"S = QQ[z]",
"I = ideal(z^2 - 1)",
"M = matrix{{(z+1)/2, (1-z)/2},{(1-z)/2, (z+1)/2}}",
"sub(M,z=>1),sub(M,z=>-1)",
"R = QQ[x,y]",
"V = linearlyReductiveAction(I, M, R)",
"H = hilbertIdeal V",
"invariants V",
},
PARA {
"The algorithm for the Hilbert ideal performs an
elimination using Groebner
bases. The options ", TO DegreeLimit, " and ",
TO SubringLimit, " are standard ", TO gb, " options
that can be used to interrupt the computation
before it is complete, yielding a partial list of
invariant generators for the Hilbert ideal."
},
Caveat => {
"Both ", TO "hilbertIdeal", " and ",
TO "invariants(LinearlyReductiveAction,ZZ)",
" require Groebner bases computations, which could
lead to long running times. It might be helpful to
run these functions separately.",
},
SeeAlso => {
hilbertIdeal,
invariants
},
}
document {
Key => {
[invariants, DegreeLimit],
[hilbertIdeal, DegreeLimit]
},
Headline => "GB option for invariants",
PARA {
"The computation of invariants of linearly reductive
group actions requires the use of Gröbner bases.
These options allow partial control over the computation
performed by ", TO (invariants,LinearlyReductiveAction),
" and ", TO (hilbertIdeal,LinearlyReductiveAction),
", allowing to terminate the computation after
reaching a certain degree. For more information,
see ", TO gb, "."
},
SeeAlso => {
(invariants,LinearlyReductiveAction),
(hilbertIdeal,LinearlyReductiveAction)
}
}
document {
Key => {
[invariants, SubringLimit],
[hilbertIdeal, SubringLimit]
},
Headline => "GB option for invariants",
PARA {
"The computation of invariants of linearly reductive
group actions requires the use of Gröbner bases.
These options allow partial control over the computation
performed by ", TO (invariants,LinearlyReductiveAction),
" and ", TO (hilbertIdeal,LinearlyReductiveAction),
", allowing to terminate the computation after a
certain number of invariants are obtained.
For more information,
see ", TO gb, "."
},
SeeAlso => {
(invariants,LinearlyReductiveAction),
(hilbertIdeal,LinearlyReductiveAction)
}
}
document {
Key => {isInvariant,
(isInvariant, RingElement, FiniteGroupAction),
(isInvariant, RingElement, DiagonalAction),
(isInvariant, RingElement, LinearlyReductiveAction)
},
Headline => "check whether a polynomial is invariant under a group action",
Usage => "isInvariant(f, G), isInvariant(f, D), isInvariant(f, L)",
Inputs => {
"f" => RingElement => {"a polynomial in the polynomial ring on which the group acts"},
"G" => FiniteGroupAction,
"D" => DiagonalAction,
"L" => LinearlyReductiveAction
},
Outputs => {
Boolean => "whether the given polynomial is invariant under
the given group action"
},
"This function is provided by the package ", TO InvariantRing,". ",
PARA {
"This function checks if a polynomial is invariant
under a certain group action."
},
PARA {
"The following example defines the permutation action
of a symmetric group on a polynomial ring with three
variables."
},
EXAMPLE {
"R = QQ[x_1..x_3]",
"L = apply(2, i -> permutationMatrix(3, [i + 1, i + 2] ) )",
"S3 = finiteAction(L, R)",
"isInvariant(1 + x_1^2 + x_2^2 + x_3^2, S3)",
"isInvariant(x_1*x_2*x_3^2, S3)"
},
PARA {
"Here is an example with a two-dimensional torus
acting on polynomial ring in four variables:"
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"W = matrix{{0,1,-1,1}, {1,0,-1,-1}}",
"T = diagonalAction(W, R)",
"isInvariant(x_1*x_2*x_3, T)",
"isInvariant(x_1*x_2*x_4, T)"
},
PARA {
"Here is another example of a product of two cyclic groups
of order 3 acting on a three-dimensional vector space:"
},
EXAMPLE {
"R = QQ[x_1..x_3]",
"W = matrix{{1,0,1}, {0,1,1}}",
"A = diagonalAction(W, {3,3}, R)",
"isInvariant(x_1*x_2*x_3, A)",
"isInvariant((x_1*x_2*x_3)^3, A)"
},
PARA {
"Here is an example with a general linear group
acting by conjugation on a space of matrices
(determinant and trace are invariants)."
},
EXAMPLE {
"S = QQ[a,b,c,d,t]",
"I = ideal((det genericMatrix(S,2,2))*t-1)",
"R = QQ[x_(1,1)..x_(2,2)]",
"Q = (S/I)(monoid R);",
"G = transpose genericMatrix(S/I,2,2)",
"X = transpose genericMatrix(Q,x_(1,1),2,2)",
"N = reshape(Q^1,Q^4,transpose(inverse(G)*X*G));",
"phi = map(S,Q);",
"M = phi last coefficients N;",
"L = linearlyReductiveAction(I, M, R)",
"isInvariant(det genericMatrix(R,2,2),L)",
"isInvariant(trace genericMatrix(R,2,2),L)"
}
}
document {
Key => {reynoldsOperator, (reynoldsOperator, RingElement, FiniteGroupAction),(reynoldsOperator, RingElement, DiagonalAction)},
Headline => "the image of a polynomial under the Reynolds operator",
Usage => "reynoldsOperator(f, G), reynoldsOperator(f, D)",
Inputs => {
"f" => RingElement => {"a polynomial in the polynomial ring of the given group action"},
"G" => FiniteGroupAction,
"D" => DiagonalAction
},
Outputs => {
RingElement => {"the invariant polynomial which is the image of the given
polynomial under the Reynolds operator of the given finite group action or the given torus action"}
},
"This function is provided by the package ", TO InvariantRing,". ",
PARA {
"The following example computes the image of a polynomial under the
Reynolds operator for a cyclic permutation of the variables."
},
EXAMPLE {
"R = ZZ/3[x_0..x_6]",
"P = permutationMatrix toString 2345671",
"C7 = finiteAction(P, R)",
"reynoldsOperator(x_0*x_1*x_2^2, C7)",
},
PARA {
"Here is an example computing the image of a polynomial under the Reynolds operator for a two-dimensional torus
acting on polynomial ring in four variables:"
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"W = matrix{{0,1,-1,1}, {1,0,-1,-1}}",
"T = diagonalAction(W, R)",
"reynoldsOperator(x_1*x_2*x_3 + x_1*x_2*x_4, T)",
},
}
document {
Key => {definingIdeal,
(definingIdeal, RingOfInvariants)},
Headline => "presentation of a ring of invariants as polynomial ring modulo the defining ideal",
Usage => "definingIdeal S",
Inputs => {
"S" => RingOfInvariants,
Variable => "name of the variables in the polynomial ring."
},
Outputs => {
Ideal => {"which defines the ring of invariants as a polynomial ring modulo the ideal."}
},
"This function is provided by the package ", TO InvariantRing,". ",
PARA {
"This method presents the ring of invariants as a polynomial ring modulo the defining ideal. The default variable name in the polynomial ring is ",TT "u_i",". You can pass the variable name you want as optional input."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"W = matrix{{0,1,-1,1},{1,0,-1,-1}}",
"T = diagonalAction(W, R)",
"S = R^T",
"definingIdeal S",
},
}
document {
Key => {RingOfInvariants},
Headline => "the class of the rings of invariants under the action of a finite group, an Abelian group or a linearly reductive group",
"This class is provided by the package ", TO InvariantRing,".",
PARA {
TT "RingOfInvariants", " is the class of rings of invariants when a finite group, an Abelian group or a linearly reductive group acts on a polynomial ring."
},
}
document {
Key => {(ambient, RingOfInvariants)},
Headline => "the ambient polynomial ring where the group acted upon",
Usage => "ambient S",
Inputs => {
"S" => RingOfInvariants => {"of the group action being returned"},
},
Outputs => {
PolynomialRing => {"where the group acted upon"}
},
"This function is provided by the package ", TO InvariantRing,".",
PARA {
"This example shows how to recover the polynomial ring when a torus acted upon."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"T = diagonalAction(matrix {{0,1,-1,1},{1,0,-1,-1}}, R)",
"S = R^T",
"ambient S"
},
}
document {
Key => {(hilbertSeries, RingOfInvariants)},
Headline => "Hilbert series of the invariant ring",
Usage => "hilbertSeries S",
Inputs => {
"S" => RingOfInvariants,
},
Outputs => {
Divide => {"the Hilbert series of the invariant ring as a module over the ambient polynomial ring."}
},
"This function is provided by the package ", TO InvariantRing,". ",
PARA {
"This method computes the Hilbert series of the ring of invariants."
},
EXAMPLE {
"R = QQ[x_1..x_4]",
"W = matrix{{0,1,-1,1},{1,0,-1,-1}}",
"T = diagonalAction(W, R)",
"S = R^T",
"hilbertSeries S",
},
}
document {
Key => {UseNormaliz, UsePolyhedra},
Headline => "option for diagonal invariants",
"This option is provided by the package ", TO InvariantRing,". ",
PARA {
"The computation of diagonal invariants relies on
finding integral points in a convex hull constructed
from a weight matrix. This option selects the package
used for finding integral points. See ",
TO (invariants,DiagonalAction),
" for usage."
},
}
|