File: Tests.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (433 lines) | stat: -rw-r--r-- 13,746 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
-*
   Copyright 2020, Luigi Ferraro, Federico Galetto,
   Francesca Gandini, Hang Huang, Matthew Mastroeni, Xianglong Ni.

   You may redistribute this file under the terms of the GNU General Public
   License as published by the Free Software Foundation, either version 2 of
   the License, or any later version.
*-

-------------------------------------------
--- FiniteGroupAction TESTS ---------------
-------------------------------------------

-- Test 0
TEST ///
R = QQ[x_1]
G = finiteAction({matrix{{-1}}}, R)
assert(set group G === set {matrix{{1_QQ}}, matrix{{-1_QQ}}})
assert(isAbelian G)
assert(reynoldsOperator(x_1 + x_1^2, G) === x_1^2)
assert(isInvariant(1 + x_1^4 + x_1^6, G))
assert(not isInvariant(1 + x_1^5 + x_1^4, G))
///

-- Test 1
TEST ///
R = QQ[x_1..x_3]
L = apply(2, i -> permutationMatrix(3, [i + 1, i + 2] ) )
S3 = finiteAction(L,R)
assert(#(group S3) === 6)
assert(not isAbelian S3)
assert(reynoldsOperator(x_1 + x_1*x_2*x_3, S3) === (1/3)*(x_1 + x_2 + x_3) + x_1*x_2*x_3)
assert(isInvariant(1 + x_1 + x_2 + x_3, S3))
assert(not isInvariant(1 + x_1, S3))
///


-------------------------------------------
--- DiagonalAction TESTS -------------
-------------------------------------------

-- The first two tests are of trivial actions, and seem to run into problems. The analogous torusAction test seems to be fine though

-- Test 2
TEST ///
R = QQ[x_1]
T = diagonalAction(matrix{{0}}, {3}, R)
invariants0 = set {R_0}
assert(set invariants T === invariants0)
assert(isInvariant(R_0 + R_0^2, T))
///

-- Test 3
TEST ///
R = QQ[x_1]
T = diagonalAction(matrix{{3}}, {1}, R)
invariants0 = set {R_0}
assert(set invariants T === invariants0)
assert(isInvariant(R_0 + R_0^2, T))
///

-- Test 4
TEST ///
R = QQ[x_1]
T = diagonalAction(matrix{{1}}, {2}, R)
invariants0 = set {R_0^2}
assert(set invariants T === invariants0)
assert(isInvariant(R_0^2, T))
///

-- Test 5
TEST ///
R = QQ[x_1..x_3]
T = diagonalAction(matrix{{1,0,1},{0,1,1}}, {3,3}, R)
invariants1 = set {x_3^3, x_2^3, x_1^3, x_1*x_2*x_3^2, x_1^2*x_2^2*x_3}
assert(set invariants T === invariants1)
///

-- Test 6
TEST ///
R = QQ[x_1]
T = diagonalAction(matrix{{0}}, R)
invariants0 = set {x_1}
assert(first weights T === matrix{{0}})
assert(set invariants T === invariants0)
///

-- Test 7
TEST ///
R0 = QQ[x_1..x_2]
T0 = diagonalAction(matrix{{1,1}}, R0)
invariants0 = set {}
assert(first weights T0 === matrix{{1,1}})
assert(set invariants T0 === invariants0)
///

-- Test 8
TEST ///
R1 = QQ[x_1..x_4]
T1 = diagonalAction(matrix {{-3, -1, 1, 2}}, R1)
invariants1 =  set {x_2*x_3, x_2^2*x_4, x_1*x_3*x_4, x_1*x_2*x_4^2, x_1^2*x_4^3, x_1*x_3^3}
assert(first weights T1 === matrix{{-3, -1, 1, 2}})
assert(set invariants T1 === invariants1)
///

-- Test 9

-- this test often fails, because the result depends on what hashcode values are, so we comment it out for now.

-- TEST ///
-- R2 = QQ[x_1..x_4]
-- T2 = diagonalAction(matrix{{0,1,-1,1},{1,0,-1,-1}}, R2)
-- invariants2 = set {x_1*x_2*x_3,x_1^2*x_3*x_4}
-- assert(set invariants T2 === invariants2)
-- ///
     
     
-------------------------------------------
--- LinearlyReductiveAction TESTS ---------
-------------------------------------------

-- Test 10
TEST ///
A = QQ[z]
I = ideal(z^2 - 1)
M = matrix{{(z+1)/2, (1-z)/2},{(1-z)/2, (1+z)/2}}
R = QQ[x_1,x_2]
V = linearlyReductiveAction(I,M,R)
assert(hilbertIdeal V == ideal(x_1 + x_2, x_2^2))
///

-- Test 11
TEST ///
R = QQ[a,b,c,d]
idealSL2 = ideal(a*d - b*c - 1)
SL2std = matrix{{a,b},{c,d}}
R1 = QQ[x_1..x_2]
V1 = linearlyReductiveAction(idealSL2,SL2std,R1)
assert(hilbertIdeal V1 == 0)
assert(set invariants V1 === set {})
SL2Sym2 = matrix{{a^2, a*b, b^2}, {2*a*c, b*c + a*d, 2*b*d}, {c^2, c*d, d^2}}
R2 = QQ[x_1..x_3]
V2 = linearlyReductiveAction(idealSL2,SL2Sym2,R2)
assert(set invariants V2 === set {x_2^2-x_1*x_3})
///

-- Test 12
-- This tests invariants for an action on a quotient ring
TEST ///
S = QQ[z]
I = ideal(z^2 - 1)
M = matrix{{(z+1)/2, (1-z)/2},{(1-z)/2, (z+1)/2}}
Q = QQ[x,y] / ideal(x*y)
L = linearlyReductiveAction(I, M, Q)
assert(invariants L === {x+y})
assert(hilbertIdeal L === ideal(x+y))
assert(invariants(L,2) === {x^2+y^2})
assert(isInvariant(x^3+y^3,L))
///

-------------------------------------------
--- equivariantHilbertSeries TESTS --------
-------------------------------------------

-- Test 13
-- mixed torus + abelian action
TEST ///
R = QQ[x_1..x_3]
W1 = matrix{{1,0,-1},{0,1,-1}}
W2 = matrix{{0,1,1},{1,0,1}}
d = {3,3}
D = diagonalAction(W1,W2,d,R)
degRing = degreesRing D
e = equivariantHilbertSeries D
assert(value denominator e === 
    1+(-z_0*z_3-z_1*z_2-z_0^(-1)*z_1^(-1)*z_2*z_3)*T+(z_0*z_1*z_
      2*z_3+z_1^(-1)*z_2*z_3^2+z_0^(-1)*z_2^2*z_3)*T^2-z_2^2*z_3^2
      *T^3)
assert(equivariantHilbertSeries(D,Order=>6) ===
    1+(z_0*z_3+z_1*z_2+z_0^(-1)*z_1^(-1)*z_2*z_3)*T+(z_0^2*z_3^2
      +z_0*z_1*z_2*z_3+z_1^2*z_2^2+z_1^(-1)*z_2*z_3^2+z_0^(-1)*z_2
      ^2*z_3+z_0^(-2)*z_1^(-2)*z_2^2*z_3^2)*T^2+(z_0^3+z_0^2*z_1*z
      _2*z_3^2+z_0*z_1^2*z_2^2*z_3+z_0*z_1^(-1)*z_2+z_1^3+z_2^2*z_
      3^2+z_0^(-1)*z_1*z_3+z_0^(-1)*z_1^(-2)*z_2^2+z_0^(-2)*z_1^(-
      1)*z_3^2+z_0^(-3)*z_1^(-3))*T^3+(z_0^4*z_3+z_0^3*z_1*z_2+z_0
      ^2*z_1^2*z_2^2*z_3^2+z_0^2*z_1^(-1)*z_2*z_3+z_0*z_1^3*z_3+z_
      0*z_2^2+z_1^4*z_2+z_1*z_3^2+z_1^(-2)*z_2^2*z_3+z_0^(-1)*z_1^
      2*z_2*z_3+z_0^(-1)*z_1^(-1)+z_0^(-2)*z_2*z_3^2+z_0^(-2)*z_1
      ^(-3)*z_3+z_0^(-3)*z_1^(-2)*z_2+z_0^(-4)*z_1^(-4)*z_2*z_3)*T
      ^4+(z_0^5*z_3^2+z_0^4*z_1*z_2*z_3+z_0^3*z_1^2*z_2^2+z_0^3*z_
      1^(-1)*z_2*z_3^2+z_0^2*z_1^3*z_3^2+z_0^2*z_2^2*z_3+z_0*z_1^4
      *z_2*z_3+z_0*z_1+z_0*z_1^(-2)*z_2^2*z_3^2+z_1^5*z_2^2+z_1^2*
      z_2*z_3^2+z_1^(-1)*z_3+z_0^(-1)*z_1^3*z_2^2*z_3+z_0^(-1)*z_2
      +z_0^(-1)*z_1^(-3)*z_3^2+z_0^(-2)*z_1*z_2^2*z_3^2+z_0^(-2)*z
      _1^(-2)*z_2*z_3+z_0^(-3)*z_1^(-1)*z_2^2+z_0^(-3)*z_1^(-4)*z_
      2*z_3^2+z_0^(-4)*z_1^(-3)*z_2^2*z_3+z_0^(-5)*z_1^(-5)*z_2^2*
      z_3^2)*T^5)
///

-- Test 14
-- torus action
TEST ///
R = QQ[x_1..x_4]
W = matrix{{0,1,-1,1},{1,0,-1,-1}}
D = diagonalAction(W, R)
degRing = degreesRing D
e = equivariantHilbertSeries D
assert(value denominator e ===
    1+(-z_0-z_0*z_1^(-1)-z_1-z_0^(-1)*z_1^(-1))*T+(z_0^2*z_1^(-1
      )+z_0*z_1+z_0+z_1^(-1)+z_1^(-2)+z_0^(-1))*T^2+(-z_0^2-z_0*z_
      1^(-2)-1-z_1^(-1))*T^3+z_0*z_1^(-1)*T^4)
assert(equivariantHilbertSeries(D,Order=>6) ===
    1+(z_0+z_0*z_1^(-1)+z_1+z_0^(-1)*z_1^(-1))*T+(z_0^2+z_0^2*z_
      1^(-1)+z_0^2*z_1^(-2)+z_0*z_1+z_0+z_1^2+z_1^(-1)+z_1^(-2)+z_
      0^(-1)+z_0^(-2)*z_1^(-2))*T^2+(z_0^3+z_0^3*z_1^(-1)+z_0^3*z_
      1^(-2)+z_0^3*z_1^(-3)+z_0^2*z_1+z_0^2+z_0^2*z_1^(-1)+z_0*z_1
      ^2+z_0*z_1+z_0*z_1^(-1)+z_0*z_1^(-2)+z_0*z_1^(-3)+z_1^3+1+z_
      1^(-1)+z_0^(-1)*z_1+z_0^(-1)*z_1^(-2)+z_0^(-1)*z_1^(-3)+z_0
      ^(-2)*z_1^(-1)+z_0^(-3)*z_1^(-3))*T^3+(z_0^4+z_0^4*z_1^(-1)+
      z_0^4*z_1^(-2)+z_0^4*z_1^(-3)+z_0^4*z_1^(-4)+z_0^3*z_1+z_0^3
      +z_0^3*z_1^(-1)+z_0^3*z_1^(-2)+z_0^2*z_1^2+z_0^2*z_1+z_0^2+z
      _0^2*z_1^(-1)+z_0^2*z_1^(-2)+z_0^2*z_1^(-3)+z_0^2*z_1^(-4)+z
      _0*z_1^3+z_0*z_1^2+z_0+z_0*z_1^(-1)+z_0*z_1^(-2)+z_1^4+z_1+1
      +z_1^(-2)+z_1^(-3)+z_1^(-4)+z_0^(-1)*z_1^2+z_0^(-1)*z_1^(-1
      )+z_0^(-1)*z_1^(-2)+z_0^(-2)+z_0^(-2)*z_1^(-3)+z_0^(-2)*z_1
      ^(-4)+z_0^(-3)*z_1^(-2)+z_0^(-4)*z_1^(-4))*T^4+(z_0^5+z_0^5*
      z_1^(-1)+z_0^5*z_1^(-2)+z_0^5*z_1^(-3)+z_0^5*z_1^(-4)+z_0^5*
      z_1^(-5)+z_0^4*z_1+z_0^4+z_0^4*z_1^(-1)+z_0^4*z_1^(-2)+z_0^4
      *z_1^(-3)+z_0^3*z_1^2+z_0^3*z_1+z_0^3+2*z_0^3*z_1^(-1)+z_0^3
      *z_1^(-2)+z_0^3*z_1^(-3)+z_0^3*z_1^(-4)+z_0^3*z_1^(-5)+z_0^2
      *z_1^3+z_0^2*z_1^2+z_0^2*z_1+z_0^2+z_0^2*z_1^(-1)+z_0^2*z_1
      ^(-2)+z_0^2*z_1^(-3)+z_0*z_1^4+z_0*z_1^3+z_0*z_1+z_0+z_0*z_1
      ^(-1)+z_0*z_1^(-2)+z_0*z_1^(-3)+z_0*z_1^(-4)+z_0*z_1^(-5)+z_
      1^5+z_1^2+z_1+z_1^(-1)+z_1^(-2)+z_1^(-3)+z_0^(-1)*z_1^3+z_0
      ^(-1)+z_0^(-1)*z_1^(-1)+z_0^(-1)*z_1^(-3)+z_0^(-1)*z_1^(-4)+
      z_0^(-1)*z_1^(-5)+z_0^(-2)*z_1+z_0^(-2)*z_1^(-2)+z_0^(-2)*z_
      1^(-3)+z_0^(-3)*z_1^(-1)+z_0^(-3)*z_1^(-4)+z_0^(-3)*z_1^(-5
      )+z_0^(-4)*z_1^(-3)+z_0^(-5)*z_1^(-5))*T^5)
///

-- Test 15
-- abelian action
TEST ///
R = QQ[x_1..x_3]
d = {3,3}
W = matrix{{1,0,1},{0,1,1}}
D = diagonalAction(W, d, R)
degRing = degreesRing D
e = equivariantHilbertSeries D
assert(value denominator e ===
    1+(-z_0*z_1-z_0-z_1)*T+(z_0^2*z_1+z_0*z_1^2+z_0*z_1)*T^2-z_0
      ^2*z_1^2*T^3)
assert(equivariantHilbertSeries(D,Order=>6) ===
    1+(z_0*z_1+z_0+z_1)*T+(z_0^2*z_1^2+z_0^2*z_1+z_0^2+z_0*z_1^2
      +z_0*z_1+z_1^2)*T^2+(z_0^2*z_1^2+z_0^2*z_1+z_0^2+z_0*z_1^2+z
      _0+z_1^2+z_1+3)*T^3+(z_0^2*z_1^2+z_0^2*z_1+z_0^2+z_0*z_1^2+3
      *z_0*z_1+3*z_0+z_1^2+3*z_1+1)*T^4+(3*z_0^2*z_1^2+3*z_0^2*z_1
      +3*z_0^2+3*z_0*z_1^2+3*z_0*z_1+z_0+3*z_1^2+z_1+1)*T^5)
///


------------------------------------------------------------------------
--- Tests imported from InvariantRing 1.0 with the new syntax ---------
------------------------------------------------------------------------

-- Test 16
-- Test for reynoldsOperator
TEST ///
R=QQ[x_0..x_2]
A=matrix{{0,1,0},{-1,0,0},{0,0,-1}}
C4=finiteAction(A,R)
assert(reynoldsOperator(x_0^2+x_1+x_2,C4)===(1/2)*(x_0^2+x_1^2))
///

-- Test 17 
-- FiniteGroupAction Test for S5 and A4
TEST ///
A=transpose matrix{{0,1,0,0},{0,0,1,0},{0,0,0,1},{-1,-1,-1,-1}}
B=matrix{{-1,1,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}
R=QQ[x_1..x_4]
S5=finiteAction({A,B},R)
assert(#(group S5) === 120)
assert(not isAbelian S5)
C=permutationMatrix toString 3124
D=permutationMatrix toString 2143
A4=finiteAction({C,D},R)
assert(#(group A4) === 12)
assert(not isAbelian A4)
///



-- Test 18
-- Checks primaryInvariants and secondaryInvariant for correct
-- output for the case where ground field is a number field.
TEST ///
K=toField(QQ[i]/(i^2+1))
R=K[x,y]
D4=finiteAction({matrix{{i,0},{0,-i}},matrix{{0,1},{1,0}}},R)
assert(#(group D4) === 8)
assert(not isAbelian D4)
P=primaryInvariants D4
assert(P === {x*y,(1/2)*x^4+(1/2)*y^4})
assert(secondaryInvariants(P,D4) === {sub(1,R)})
assert(hironakaDecomposition D4 === ({x*y,(1/2)*x^4+(1/2)*y^4},{sub(1,R)}))
///

-- D4 is the dihedral group of order 8
-- Note i is the square root of -1
-- If A=matrix{{i,0},{0,-i}}, B=matrix{{0,1},{1,0}}, one can check that 
-- A^4=B^2=(A*B)^2=1, which are the defining relations for the dihedral group of
-- order 8.

-- Test 19 
-- Checks invariantRing for correct output for the case where ground field is a 
-- number field.
TEST ///
K=toField(QQ[i]/(i^2+1))
R=K[x,y]
D4=finiteAction({matrix{{i,0},{0,-i}},matrix{{0,1},{1,0}}},R)
assert(invariants D4 === {x*y,x^4+y^4})
///

-- Test 20
-- Checks primaryInvariants for the symmetric group S3 - these should be
-- the elementary symmetric polynomials in 3 variables

TEST ///
R = QQ[x,y,z]
r=permutationMatrix toString 312
s=permutationMatrix toString 213
S3 = finiteAction({r,s},R)
assert(isInvariant(x*y*z,S3))
assert(isInvariant(x+y+z,S3))
assert(isInvariant(x*y+x*z+y*z,S3))
P=primaryInvariants(S3)
assert(dim(R/ideal(P))==0)
assert(P==apply(P,f->reynoldsOperator(f,S3)))
H=hilbertSeries(R/ideal(P))
use ring value numerator H
assert(value numerator H === 1-T-T^2+T^4+T^5-T^6)
assert(value denominator H === sub((1-T)^3, ring value denominator H))
///


-- Test 21
-- Checks that the Dade algorithm works for large enough finite fields 
-- *NB it is possible that primaryInvariants(S3,Dade=>true) can run correctly 
-- and output an invariant polynomial of degree strictly less than the 
-- cardinality of the group. If a check on the package invariant ring reports 
-- failure of the following test, then one should see if the test is passed upon 
-- a second attempt. Only if the test fails a second time is it worth inspecting 
-- the code for errors.  

TEST ///
K=GF(101)
R=K[x,y,z]
r=permutationMatrix toString 312
s=permutationMatrix toString 213
S3 = finiteAction({r,s},R)
setRandomSeed 0
P=primaryInvariants(S3, Dade=>true)
P/degree			 -- under Ubuntu 32, this gives {{3}, {6}, {6}}
setRandomSeed 0
P=primaryInvariants(S3,Dade=>true);
P/degree			 -- under Ubuntu 32, this gives {{6}, {6}, {6}}
assert(
     P==apply(P,f->reynoldsOperator(f,S3))
     )
assert(
     dim(R/ideal(P))==0
     )
assert(
     apply(P,degree)==toList(#P:{#(group S3)})
     )
///




-- Test 22
-- Checks molienSeries and secondaryInvariants on a known example where the
-- ground field is a number field 
TEST ///
K=toField(QQ[a]/(a^2+a+1))
A=matrix{{a,0},{0,a^2}}
B=sub(matrix{{0,1},{1,0}},K)
R=K[x,y]
D6=finiteAction({A,B},R)
mol=molienSeries D6
use ring value denominator mol;
assert(
     (value denominator mol)==(T^5-T^3-T^2+1)
     )
assert(
     (value numerator mol)==1
     )
assert(
     secondaryInvariants({x^3+y^3,-(x^3-y^3)^2},D6)=={1,x*y,x^2*y^2}
     )	
 ///
 

 
 -- Test 23
 -- Checks the dadeHSOP routine by checking that the list of polynomials output
-- has the expected output. Namely:
-- they are invariant polynomials,
-- they form a homogeneous system of parameters for the polynomial ring
-- they have degrees equal to the cardinality of the group (which should occur
-- with probability 1)*
-- *NB it is possible that dadeHSOP can run correctly and output an invariant
-- polynomial of degree strictly less than the cardinality of the group. If a
-- check on the package invariant ring reports failure of the following test,
-- then one should see if the test is passed upon a second attempt. Only if the
-- test fails a second time is it worth inspecting the code for errors.   	    	 
TEST ///
setRandomSeed 0
S=QQ[x,y]
r=matrix{{0,-1},{1,0}}
s=matrix{{0,1},{1,0}}
D4=finiteAction({r,s},S)
P=primaryInvariants(D4,Dade=>true)
assert(
     P==apply(P,f->reynoldsOperator(f,D4))
     )
assert(
     dim(S/ideal(P))==0
     )
assert(
     apply(P,degree)==toList(#P:{#(group D4)})
     )
///