File: Isomorphism.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (540 lines) | stat: -rw-r--r-- 14,694 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
newPackage(
    "Isomorphism",
    Version => "1.0",
    Date => "April 27, 2022",
    Headline => "Probabilistic test of isomorphism between modules",
    Authors => {{Name => "David Eisenbud", 
                  Email => "de@msri.org", 
                  HomePage => "http://www.msri.org/~de"}
                  },
    Keywords => {"Commutative Algebra", "Homological Algebra", "Projective Algebraic Geometry"},
    DebuggingMode => false
    )

export {
    "isIsomorphic",
    "checkDegrees",
    --
    "Strict" -- option for checkDegrees making the homogeneous case preserve degrees.
    }
    

-* Code section *-

randomMinimalDegreeHomomorphism=method()
randomMinimalDegreeHomomorphism(Matrix, Matrix, ZZ) := Matrix => (n,m,d) -> (
    --m,n homogeneous, minimal over a ring with degree length 1 (this restridd
    
    --given free presentations
    --M = coker m:M1 -> M0 
    --N = coker n: N1 -> N0
    --(ring M)^diffdegs has the same degrees as N,
    --so if diffdegs  is positive, then 
    -- M is generated in higher degrees than N, and
    --the iso M->N has degree -diffdegs
    
    --efficiently compute 
    --the matrices of a random degree -diffdegs 
    --homomorphisms M -> N of degree  -diffdegs.
    
    --check that the hypotheses are satisfied:
    S := ring m;    
    resField := S^1/(ideal gens S);
    if not 
       (degreeLength S == 1 and 
	isHomogeneous m and 
	isHomogeneous n and
	m**resField == 0 and
	n**resField == 0) then 
	error"Unsuitable ring, modules or presentations.";
	
    M0:= target m;
    m' := transpose m;
    M0' := source m';
    M1' := target m';
    N0 := target n;

    h := syz(m'**N0 | M1'**n, 
             SyzygyRows => rank N0*rank M0', 
	     DegreeLimit => -{d});
	 
    p := positions(degrees source h, e -> e == -{d});
    hp := h_p;
    a := hp*random(source (hp), S^{d}); --represents general map of degree -diffdegs
    map(coker n, coker m, matrix reshape(N0, M0, a))
    )

isDegreeListZero = L -> 
-- test whether a list of lists has all entries of entries 0
   all(L, s -> 
           all(s,  e-> e === 0)); 

checkDegrees = method(Options =>{Verbose =>false, Strict =>false})
checkDegrees(Module, Module) := Sequence => o -> (A,B) -> (
    v := o.Verbose;
    S := ring A;
    mm := ideal gens S;
    Abar := A/(mm*A);
    Bbar := B/(mm*B);
    if numgens Abar != numgens Bbar then (
		if v then <<"numbers of generators are different"<<endl;
	        return (false, null)
	        );
    if not (isHomogeneous A and isHomogeneous B) then (
                if v then <<"numbers of generators agree"<<endl;
		return (true,{"inhomogeneous"}));
	    
	dA := sort degrees Abar;
        dB := sort degrees Bbar;
	if o.Strict == true and not dA == dB then return(false, );
	
        degdiffs := for i from 0 to #dA-1 list dA_i-dB_i;
        matches := all(degdiffs, s-> s == degdiffs_0);
        if matches then(
        	--now the degrees of the generators are equal.
        if v and not isDegreeListZero degdiffs then 
	       <<"To make the degree sequences equal, tensor "<<A<<"with ring " << A << "to " << {dA_0-dB_0} <<endl;
               return (true, dA_0-dB_0)
	               );
	        --now matches == false
  	if v then <<"degree sequences don't match"<<endl;
	(false, null)
    )
checkDegrees(Matrix, Matrix) := Sequence => o-> (m,n) -> checkDegrees(target m, target n, o)

///
restart
loadPackage "Isomorphism"
S = ZZ/101[a,b,Degrees => {{1,0},{0,1}}]
A = S^{{2,1}}
B1 = S^{{1,1}}
B = S^{{1,1}, {2,3}}
d = checkDegrees(A,B, Verbose => true)
assert(d == (false,null))
d = checkDegrees(A,B1)
B' = S^{{3,3}}**B
d = checkDegrees(B',B)
e = checkDegrees(S^{d_1}**B', B)
e = checkDegrees(B', S^{-d_1}**B)
assert (e_0 == true)
---
S = ZZ/101[a,b,Degrees => {{1,0},{0,1}}]
B1 = S^{{1,1}}
B = S^{{1,1}, {2,3}}
A = coker random(B, S^{2:-{2,2}})
B = A
checkDegrees(A,B)
d = checkDegrees(A,B1)
checkDegrees(B,B)
///

isIsomorphic = method(Options =>{Homogeneous => true, Verbose => false, Strict =>false})
isIsomorphic(Module, Module) := Sequence => o ->  (N,M)->(
    --returns a pair (false, null) or (true, f), or where f is an isomorphism 
    --f: M to N.
    --if an inhomogeneous iso is to be allowed, use the option
    --Homogeneous => false
        v := o.Verbose;
	
        if o.Homogeneous == true and 
	        not (isHomogeneous M and isHomogeneous N) then 
	        error"inputs not homogeneous";
    	S := ring M;
	resS := S/(ideal gens S);

    	m := presentation M;

	if m**resS == 0 then 
	    (M1 := M; 
	     m1 := map(M, coker m, 1)) else
	     (m = presentation (M1 = prune M);
	     m1 = M1.cache.pruningMap
    	     );--iso from M1 to M
	 
    	n := presentation N;
	if n**resS == 0 then 
	    (N1 := N;
	    n1 := map(N,coker n, 1)) else
	    (n = presentation (N1 = prune N);
	    n1 = N1.cache.pruningMap); --iso from N1 to N

	--handle the cases where one of M,N is 0
	isZM1 := target m ==0;
	isZN1 := target n ==0;	
    	if isZM1 =!= isZN1 then return (false, null );
	if isZM1 and isZN1 then return (true, map(N,M,0));

	-- from now on, M1 and N1 are nonzero and pruned
	if o.Homogeneous then (
	df := checkDegrees (N1,M1,Verbose => o.Verbose, Strict => o.Strict);
	if class df_1 =!= List  then return (false, null));
	--now there is a chance at an isomorphism up to shift, 
	--and df is the degree diff.

	--compute an appropriate random map g
	if o.Homogeneous and degreeLength S == 1 then
	g := randomMinimalDegreeHomomorphism(n,m, -df_1_0) else (
        H := Hom(M1,N1);       
	kk := ultimate(coefficientRing, S);
	if o.Homogeneous === true then
	      sH := select(H_*, f-> degree f == -df_1) else 
	      sH = H_*;
	if #sH == 0 then return false;
    	g = sum(sH, f-> random(kk)*homomorphism matrix f)
	);
        
	--test g to see if it's surjective:
	kmodule := coker vars S;
	gbar := kmodule ** g;

	t1 := prune coker gbar == 0;
	if t1 == false then return (false, null);
	
	t2 := prune ker g == 0;
	if t2 then (true, n1*g*(m1^-1)) else (false, null)
    )
isIsomorphic(Matrix,Matrix) := Sequence => o -> (n,m) -> 
           isIsomorphic(coker m, coker n)

-*
restart
loadPackage("Isomorphism", Reload =>true)
*-
///
setRandomSeed 0
S = ZZ/32003[a,b,Degrees => {{1,0},{0,1}}]
B1 = S^{{1,1}}
B = S^{{1,1}, {2,3}}
A = coker random(B, S^{2:-{3,3}})
A1 = coker (a = random(B1^3, S^{2:-{3,3}}))
A2 = coker (random(target a, target a)*a*random(source a,source a))
C1 = coker (a = random(B1^3, S^{2:-{3,3}, -{4,5}}))
C2 = coker (matrix random(S^3, S^3)*matrix a*matrix random(S^3,S^3))

--isIsomorphic(C1,C2) -- gives an error because C2 is not homogeneous
assert((isIsomorphic(C1,C2, Homogeneous => false))_0 ==true)
isIsomorphic(C1,C2, Homogeneous => false) -- this should be true!

isIsomorphic(C1,C1, Homogeneous => false) -- this should be true!


assert((isIsomorphic(A1,A2))_0 == true)
assert(coker ((isIsomorphic(A1,A2))_1) == 0)
assert((isIsomorphic (A,A))_0 == true)
assert((isIsomorphic(B1,B1))_0 == true)
assert((isIsomorphic(A,B1))_0 == false)
assert((isIsomorphic(A1,B1, Verbose => true))_0 === false)
///


-* Documentation section *-
beginDocumentation()

doc ///
Key
 Isomorphism
Headline
 Probabilistic test for isomorphism
Description
  Text
   Two modules are isomorphic if there is a surjection in each direction.
   These routines produce random combinations of the generators of Hom
   and test whether these are surjections.
SeeAlso
 isIsomorphic
 checkDegrees
Contributors
 Mike Stillman
///

doc ///
Key
 checkDegrees
 (checkDegrees,Module,Module)
 (checkDegrees,Matrix,Matrix)
 [checkDegrees, Verbose]
 [checkDegrees, Strict] 
Headline
 compares the degrees of generators of two modules
Usage
 d = checkDegrees(N,M)
 d = checkDegrees(n,m) 
Inputs
 N:Module
 n:Matrix
  presentation of N
 M:Module
 m:Matrix
  presentation of M
Outputs
 d:Sequence
  (Boolean, a degree in the ring of M and N)
Description
  Text
   This is to be used with @TO isIsomorphic@.
   
   The routine compares the sorted lists of degrees of generators of the two modules;
   the degreeLength (can be anything).
   If the numbers of generators of M,N are different, the modules are not isomorphic,
   and the routine returns (false, null).

   If the numbers are the same, and all the corresponding degrees pairs differ
   by the same amount (so that the modules might become isomorphic after a shift, 
   then if Strict => false (the default)
   the output (true, e) tells how to adjust the modules to make the degrees equal:
   either tensor N with (ring N)^{e} or tensor M with (ring M)^{-e}.
   
   If Strict => true, then the output is (false, null) unless
   the offset e is 0.
  Example
   S = ZZ/101[a,b,Degrees => {{1,0},{0,1}}]
   A = S^{{2,1}}
   B = S^{{1,1}}
   B' = S^{{3,3}}**B
   C = S^{{1,1}, {2,3}}
   checkDegrees(A,B)
   checkDegrees(A,C)

   d = checkDegrees(B',B)
   degrees (S^{d_1}**B') == degrees B
   degrees (B') == degrees (S^{-d_1}**B)
   checkDegrees(B',B,Strict=>true)   
SeeAlso
 isIsomorphic
 Strict
///

doc ///
Key
 Strict
Headline
 Forces strict equality of degrees
Usage
 d = checkDegrees(N,M, Strict =>true)
Description
 Text
   Used with Strict=>false, the default, 
   checkDegrees(N,M) returns (true, deg) if 
   degrees M and degrees N are equal up to a shift d.
   With Strict => true the degree lists must be equal.
 Example
     S = ZZ/101[a,b,Degrees => {{1,0},{0,1}}]
     B = S^{{1,1}}
     B' = S^{{3,3}}**B
     d = checkDegrees(B',B)
     degrees (S^{d_1}**B') == degrees B
     degrees (B') == degrees (S^{-d_1}**B)
     checkDegrees(B',B,Strict=>true)   
SeeAlso
 checkDegrees
///


doc ///
Key
 isIsomorphic
 (isIsomorphic, Module, Module)
 (isIsomorphic, Matrix, Matrix) 
 [isIsomorphic, Verbose]
 [isIsomorphic, Homogeneous]
 [isIsomorphic, Strict] 
Headline
 Probabilistic test for isomorphism of modules
Usage
 t = isIsomorphic (N,M)
 t = isIsomorphic (n,m) 
Inputs
 M:Module
 m:Matrix
  presentation of M
 N:Module
 n:Matrix
  presentation of N
 Homogeneous => Boolean
 Verbose => Boolean
 Strict => Boolean 
Outputs
 t:Sequence
  (Boolean, Matrix) or (Boolean, null)
Description
  Text
   In case both modules are homogeneous the program first uses @TO checkDegrees@
   to see whether an isomorphism is possible. This may be an isomorphism up to shift
   if Strict => false (the default) or on the nose if Strict => true.
   
   If this test is passed, the program uses a variant of the Hom command
   to compute a random map of minimal possible degree from M to N,
   and checks whether this is surjective and injective.
   
   In the inhomogeneous case (or with Homogeneous => false) the random map is
   a random linear combination of the generators of the module of homomorphisms.

   If the output has the form (true, g), then g is guaranteed to be an
   isomorphism. If the output is (false, null), then the
   conclusion of non-isomorphism is only probabilistic.
   
  Example
   setRandomSeed 0
   S = ZZ/32003[x_0..x_3]     
   m = random(S^3, S^{4:-2});
   A = random(target m, target m)
   B = random(source m, source m)
   m' = A*m*B;
   isIsomorphic (S^{-3}**coker m, coker m)
   isIsomorphic (S^{-3}**coker m, coker m, Strict => true)
   isIsomorphic (coker m, coker m')
  Text   
   The following example checks two of the well-known isomorphism
   in homological algebra.
  Example
   setRandomSeed 0
   S = ZZ/32003[x_0..x_3]   
   I = monomialCurveIdeal(S,{1,3,5})
   codim I
   W = Ext^2(S^1/I, S^1)
   W' = Hom(S^1/I, S^1/(I_0,I_1) )
   isIsomorphic(W,W')   
   mm = ideal gens S
   (isIsomorphic(Tor_1(W, S^1/(mm^3)), Tor_1(S^1/(mm^3), W)))_0
Caveat
   A negative result means that a random choice of homomorphism
   was not an isomorphism; especially when the ground field is small,
   this may not be definitive.
SeeAlso
 checkDegrees
///
-* Test section *-
-*
restart
loadPackage "Isomorphism"
*-

TEST /// -*getting the degree shift right*-
   S = ZZ/32003[x_1..x_3]
   m = random(S^3, S^{4:-2})
   A = random(target m, target m)
   B = random(source m, source m)
   m' = A*m*B
   assert(checkDegrees (S^{-3}**coker m, coker m') == (true, {3}))
   assert((isIsomorphic (S^{-3}**coker m, coker m'))_0 == true)
///

-*
restart
uninstallPackage "Isomorphism"
restart
installPackage "Isomorphism"
loadPackage "Isomorphism"
*-

TEST///--getting the degrees right in matrixHom
debug needsPackage "Isomorphism"
S = ZZ/101[x,y]
m = matrix{{x,y}}
n = matrix{{x^2, y^2}}

setRandomSeed 0
assert(all(flatten for a from -2 to 2 list for b from -2 to 2 list(
a = -2;b=2;
(v, diffdegs) = checkDegrees (S^{a}**(m++m),S^{b}**(m++m));
((prune coker randomMinimalDegreeHomomorphism(S^{a}**(m++m),S^{b}**(m++m),-diffdegs_0) == 0))
), t -> t))
///

TEST///--the inhomogeneous case
   setRandomSeed 0
   S = ZZ/101[a,b,Degrees => {{1,0},{0,1}}]
C = S^{{1,1}, {2,3}}
C' = S^{{1,1}, {2,4}}
assert((isIsomorphic(C,C'))_0 == false)
(t,g) = isIsomorphic(C,C', Homogeneous => false)
assert(t==true)
assert(isWellDefined g)
assert(source g == C')
assert(target g == C)
assert(coker g == 0)
assert(ker g == 0)
///

TEST/// -- the non-minimally presented case
   setRandomSeed 0
      S = ZZ/101[a,b]
C = coker (m = map(S^{2}++S^1, S^{2}++S^{-1}, matrix"1,0;0,a"))
a = random(target m, target m)
b = random(source m, source m)
C' = coker (a*m*b)
(t,g) = isIsomorphic(C,C')
assert(t==true)
assert(isWellDefined g)
assert(source g == C')
assert(target g == C)
assert(coker g == 0)
assert(ker g == 0)
///

TEST /// -* checkDegrees *-
   setRandomSeed 0
   S = ZZ/101[a,b,Degrees => {{1,0},{0,1}}]
   A = S^{{2,1}}
   B = S^{{1,1}}
   B' = S^{{3,3}}**B
   C = S^{{1,1}, {2,3}}

   checkDegrees(A,B)
   assert(checkDegrees(A,B) ==(true,{-1,0}))
   assert(checkDegrees(A,C) == (false,null))
   
   d = checkDegrees(B',B)
   assert(degrees (S^{d_1}**B') == degrees B)
   assert(degrees (B') == degrees (S^{-d_1}**B))
   assert(checkDegrees(B',B,Strict=>true) == (false, null))
///




TEST///-*"isIsomorphic"*-
needsPackage "Points"
canonicalIdeal = method()
canonicalIdeal Ideal := Ideal => I ->(
    S := ring I;
    R := S/I;
    F := res I;
    omega := coker sub(transpose F.dd_(length F), R);
    H := Hom(omega,R^1);
    deg := max degrees source gens H;
    g := (gens H)*random(source gens H, R^-deg);
    trim sub(ideal g,R) ---canonical ideal of a 1-dim ring.
)

kk=ZZ/32003
S = kk[x,y,z]

d = 15
I = points randomPointsMat(S,d);
elapsedTime W = canonicalIdeal I;
R = ring W;
n =2
M = module(trim W^n)
N = Hom(M, R^1)
g = (isIsomorphic (N,M))_1;
assert (isWellDefined g)
assert(source g == M)
assert(target g == N)
assert(coker g == 0)
assert(ker g == 0)
///


end--

-* Development section *-
uninstallPackage "Isomorphism"
restart
installPackage "Isomorphism"
check "Isomorphism"
viewHelp "Isomorphism"
restart