1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
  
     | 
    
      -- -*- coding: utf-8 -*-
-- licensed under GPL v2 or any later version
newPackage(
    "LieTypes",
    Version => "0.5",
    Date => "June 22, 2018",
    Headline => "common types for Lie groups and Lie algebras",
    Authors => {
	  {Name => "Dave Swinarski", Email => "dswinarski@fordham.edu"}
	  },
    Keywords => {"Lie Groups and Lie Algebras"},
    PackageImports => {"ReesAlgebra"},
    Certification => {
	 -- same article as for package ConformalBlocks
	  "journal name" => "The Journal of Software for Algebra and Geometry",
	  "journal URI" => "http://j-sag.org/",
	  "article title" => "Software for computing conformal block divisors on bar M_0,n",
	  "acceptance date" => "2 August 2018",
	  "published article URI" => "https://msp.org/jsag/2018/8-1/p08.xhtml",
	  "published article DOI" => "10.2140/jsag.2018.8.81",
	  "published code URI" => "https://msp.org/jsag/2018/8-1/jsag-v8-n1-x08-LieTypes.m2",
	  "repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/LieTypes.m2",
	  "release at publication" => "923fbcc7c77b23f510bb0d740e00fc1722a2f397",	    -- git commit number in hex
	  "version at publication" => "0.5",
	  "volume number" => "8",
	  "volume URI" => "https://msp.org/jsag/2018/8-1/"
	  }
    )
export {
    --for the LieAlgebra type:
    "LieAlgebra",
    "simpleLieAlgebra",
    "dualCoxeterNumber", 
    "highestRoot",
    "starInvolution",
    "KillingForm",
    "weylAlcove",
    --for the LieAlgebraModule type
    "LieAlgebraModule", 
    "irreducibleLieAlgebraModule",
    "isIsomorphic",
    "casimirScalar",
    "weightDiagram",
    "tensorCoefficient",
    "fusionProduct",
    "fusionCoefficient",
    "MaxWordLength",
    "positiveRoots"
    }
-- Access hasAttribute, getAttribute
debug Core
-*
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
-- Summary, Version 0.1, August 2012
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
We define two types that are used by the ConformalBlocks package:
LieAlgebra
LieAlgebraModule
Objects of both types are hash tables.
LieAlgebras have three keys: RootSystemType, LieAlgebraRank, and isSimple
The functions available for LieAlgebras are:
simpleLieAlgebra
dualCoxeterNumber
highestRoot
starInvolution
KillingForm
weylAlcove
LieAlgebraModules have three keys: LieAlgebra, HighestWeight, and isIrreducible
The functions available for LieAlgebraModules are:
dimension
weights
casimirScalar
tensor product decomposition
fusion coefficient
Most of the lines of code below are to implement 
* Freudenthal's formula for the multiplicity of a weight w in the irreducible g-module with highest weight v
* the Racah-Speiser algorithm for computing tensor product decompositions
* the Kac-Walton algorithm for computing fusion product decompositions 
Many of these functions are copied over from early versions of Swinarski's ConformalBlocks package.  
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
-- Summary, Version 0.5, June 2018
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
Fixed a minor bug in multiplicity function (needed to allow for options, since multiplicity is 
a method with options.)  Changed the LieAlgebra and LieAlgebraModule classes to print out the
global variable names instead of the hash table contents. 
*-
-----------------------------------------------------------------------
-- LieAlgebra= {
--   LieAlgebraRank => ZZ, dim of Cartan subalgebra
--   RootSystemType => String, type A through G
--   isSimple => Boolean
--   }
LieAlgebra = new Type of HashTable  
LieAlgebra.GlobalAssignHook = globalAssignFunction
LieAlgebra.GlobalReleaseHook = globalReleaseFunction
expression LieAlgebra := g -> (
    if hasAttribute(g,ReverseDictionary) then return expression toString getAttribute(g,ReverseDictionary);
    if not hasAttribute(g,ReverseDictionary) then (
        if g#"isSimple" then return concatenate("Simple Lie algebra, type ",toString(g#"RootSystemType"),", rank ",toString(g#"LieAlgebraRank"));
	if not g#"isSimple" then return concatenate("Nonsimple Lie algebra, type ",toString(g#"RootSystemType"),", rank ",toString(g#"LieAlgebraRank"))
    );
)	
net LieAlgebra := X -> net expression X;
LieAlgebra == LieAlgebra := (V,W)-> (V===W)
simpleLieAlgebra = method(
    TypicalValue => LieAlgebra
    )
simpleLieAlgebra(String,ZZ) := (type,m) -> (
    if not member(type,{"A","B","C","D","E","F","G"}) then error "The simple Lie algebras over the complex numbers have types A, B, C, D, E, F, or G";
    if type=="A" and m<= 0 then error "The rank for type A must be >= 1.";
    if type=="B" and m<= 1 then error "The rank for type B must be >= 2.";
    if type=="C" and m<= 1 then error "The rank for type C must be >= 2.";
    if type=="D" and m<= 2 then error "The rank for type D must be >= 3.";
    if type=="E" and not member(m,{6,7,8}) then error "The rank for type E must be 6, 7, or 8.";
    if type=="F" and m!=4 then error "The rank for type F must be 4.";
    if type=="G" and m!=2 then error "The rank for type G must be 2.";                    
    new LieAlgebra from {"LieAlgebraRank"=>m,"RootSystemType"=>type,"isSimple"=>true}
    )
-*simpleLieAlgebra(IndexedVariable) := (v) -> (
    if #v > 2 or not member(v#0,{symbol sl, symbol so, symbol sp}) or not instance(v#1,ZZ) then error "Input not understood; enter sl_k, sp_k, or so_k, or use the syntax simpleLieAlgebra(\"A\",1) instead";
    k:=v#1;
    if v#0 == symbol sl and k >= 2 then return simpleLieAlgebra("A",k-1);
    if v#0 == symbol so and odd(k) and k>=5  then return simpleLieAlgebra("B",lift((k-1)/2,ZZ));
    if v#0 == symbol sp and even(k) and k >= 4 then return simpleLieAlgebra("C",lift(k/2,ZZ));
    if v#0 == symbol so and even(k) and k >= 8 then return simpleLieAlgebra("D",lift(k/2,ZZ));
    )
*-
    
dualCoxeterNumber = method(
    TypicalValue => ZZ
    )     
dualCoxeterNumber(String,ZZ) := memoize((type,m) -> (--see Appendix 13.A, [DMS]
    if type == "A" then return m+1;
    if type == "B" then return 2*m-1;
    if type == "C" then return m+1;
    if type == "D" then return 2*m-2;
    if type == "E" and m==6 then return 12;
    if type == "E" and m==7 then return 18;
    if type == "E" and m==8 then return 30;
    if type == "F" then return 9;
    if type == "G" then return 4
    ));   
dualCoxeterNumber(LieAlgebra) := memoize((g) -> (--see Appendix 13.A, [DMS]
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";
    dualCoxeterNumber(type,m)	  
    )); 
highestRoot = method(
    TypicalValue => List
    )
highestRoot(String,ZZ) := memoize((type, m) -> (--see Appendix 13.A, [DMS]
    if type == "A" and m==1 then return {2};
    if type == "A" and m >= 2 then return flatten {{1}, apply(m-2,i->0),{1}};
    if type == "B" and m==2 then return flatten {0,2};
    if type == "B" and m>=3 then return flatten {{0},{1}, apply(m-2,i->0)};
    if type == "C" then return flatten {{2}, apply(m-1,i->0)};
    if type == "D" and m==3 then return {0,1,1};
    if type == "D" and m>=4 then return flatten {{0},{1}, apply(m-2,i->0)};
    --July 2011: changed numbering of nodes in Dynkin diagram to match WeylGroups
    if type == "E" and m==6 then return {0,1,0, 0,0,0};
    if type == "E" and m==7 then return {1,0,0,0, 0,0,0};
    if type == "E" and m==8 then return {0,0,0,0, 0,0,0,1};
    if type == "F" then return {1,0,0,0};
    if type == "G" then return {0,1}
));
highestRoot(LieAlgebra) := memoize((g) -> (--see Appendix 13.A, [DMS]
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";   
    highestRoot(type,m)
));
starInvolution = method(
    TypicalValue => List
    )
starInvolution(String,ZZ,List) := memoize((type, m, w) ->  ( N:=#w;
    if type == "A" then return apply(N,i-> w_(N-i-1));
    if type == "B" or type == "C" or type == "F" or type == "G" then return w;
    if type == "E" and m!= 6 then return w;
    if type == "D" and even(m) == true then return w;
    if type == "D" and odd(m) == true then (x:=w;
        return append(drop(x,{#x-2,#x-2}),w_(#w-2)));
    if type == "E" and m== 6 then return {w_5,w_1,w_4,w_3,w_2,w_0};
    ));
starInvolution(List,LieAlgebra) := memoize((v,g) -> (
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";   
    starInvolution(type,m,v)
));
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
-- The LieAlgebraModule type
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
-- LieAlgebraModule= {
--   LieAlgebra => 
--   isIrreducible => Boolean
--   highestWeight
--   }
--Functions: weights, dimension, **
LieAlgebraModule = new Type of HashTable 
LieAlgebraModule.GlobalAssignHook = globalAssignFunction
LieAlgebraModule.GlobalReleaseHook = globalReleaseFunction
expression LieAlgebraModule := V -> (
    if hasAttribute(V,ReverseDictionary) then expression toString getAttribute(V,ReverseDictionary) else toString(pairs V)
);
net LieAlgebraModule := V -> (
    if hasAttribute(V,ReverseDictionary) then return net expression V; 
    if not hasAttribute(V,ReverseDictionary) then return (
	orderedPairs:=delete(null,{("LieAlgebra",V#"LieAlgebra"),("isIrreducible",V#"isIrreducible"),if V#?"highestWeight" then ("highestWeight",V#"highestWeight"),("DecompositionIntoIrreducibles",V#"DecompositionIntoIrreducibles")});
	horizontalJoin flatten (
          "{",
          -- the first line prints the parts vertically, second: horizontally    
          stack (horizontalJoin \ apply(orderedPairs,(k,v) -> (net k, " => ", net v))),                                        
          "}"
          )
      )
);
LieAlgebraModule#{Standard,AfterPrint} = V -> ( s:="";
    if not hasAttribute(V#"LieAlgebra",ReverseDictionary) then s = " : LieAlgebraModule";
    if hasAttribute(V#"LieAlgebra",ReverseDictionary) then (
	s = concatenate(" : ",expression(V#"LieAlgebra")," module")	
    );	
    << endl;				  -- double space
    << concatenate(interpreterDepth:"o") << lineNumber << s;
    << endl;
 );
isIsomorphic = method(
    TypicalValue => Boolean
    )
isIsomorphic(LieAlgebraModule,LieAlgebraModule) := (M,N) -> (
    if M#"LieAlgebra" != N#"LieAlgebra" then return false;
    M#"DecompositionIntoIrreducibles"===N#"DecompositionIntoIrreducibles"
)
LieAlgebraModule ++ LieAlgebraModule := (M,N) -> (
    if dim(M) == 0 then return N;
    if dim(N) == 0 then return M; 
    if M#"LieAlgebra" != N#"LieAlgebra" then error "Modules must be over the same Lie algebra";
    g:=M#"LieAlgebra";
    Mdecomposition:=new MutableHashTable from pairs(M#"DecompositionIntoIrreducibles");
    Ndecomposition:= pairs(N#"DecompositionIntoIrreducibles");
    for i from 0 to #Ndecomposition-1 do (
        if Mdecomposition#?(Ndecomposition_i_0) then Mdecomposition#(Ndecomposition_i_0) = Mdecomposition#(Ndecomposition_i_0) + Ndecomposition_i_1;
	if not (Mdecomposition#?(Ndecomposition_i_0)) then Mdecomposition#(Ndecomposition_i_0) = Ndecomposition_i_1;
    );
    D:=new HashTable from pairs(Mdecomposition);
    new LieAlgebraModule from {"LieAlgebra"=>g,"isIrreducible"=>false,"DecompositionIntoIrreducibles"=>D}
)
irreducibleLieAlgebraModule = method(
    TypicalValue => LieAlgebraModule
    )
irreducibleLieAlgebraModule(List,LieAlgebra) := (v,g) -> (
    new LieAlgebraModule from {"LieAlgebra"=>g,"highestWeight"=>v,"isIrreducible"=>true,"DecompositionIntoIrreducibles"=>(new HashTable from {v=>1})}
    )
-*-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
-- Private functions for LieAlgebraModule
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
We implement the Lie theoretic ingredients needed to compute the weights in an irreducible Lie algebra module and their multiplicities
We need: 
--a list of the positive roots
--the ability to compute casimirScalars
---->To get casimirScalars, we need the so-called quadratic form matrix, which can be looked up or computed from the Cartan matrix
Cartan matrices and the Killing form are also implemented in the WeylGroups package.  I am using my own 
implementations because I want the Cartan matrix over QQ (so I can invert it) and so that the Killing form is scaled to make 
(theta,theta) = 2, where theta is the highest root.  This is a popular convention in the conformal blocks literature that is not used in WeylGroups. 
To avoid shadowing, I have named my function cartanMatrixQQ
*-
cartanMatrixQQ = memoize((type, m) ->( M:={};
	  i:=0;
    if type=="A" then (
        return matrix apply(m, i-> (1/1)*apply(m, j -> if j==i-1 then -1 else if j==i then 2 else if j==i+1 then -1 else 0))
    );
    if type=="B" then (
        M = apply(m-2, i ->  (1/1)*apply(m, j -> if j==i-1 then -1 else if j==i then 2 else if j==i+1 then -1 else 0)); 
        M = append(M, (1/1)*apply(m, j -> if j==(m-2)-1 then -1 else if j==(m-2)then 2 else if j==(m-2)+1 then -2 else 0)); 
        M = append(M, (1/1)*apply(m, j -> if j==(m-1)-1 then -1 else if j==(m-1) then 2 else if j==(m-1)+1 then -1 else 0));
        return matrix M
    );
    if type=="C" then (
        M = apply(m-2, i -> (1/1)*apply(m, j -> if j==i-1 then -1/1 else if j==i then 2 else if j==i+1 then -1 else 0)); 
        M = append(M, (1/1)*apply(m, j -> if j==m-2-1 then -1 else if j==m-2 then 2 else if j==m-2+1 then -2 else 0)); 
        M = append(M, (1/1)*apply(m, j -> if j==m-1-1 then -1 else if j==m-1 then 2 else if j==m-1+1 then -1 else 0));
        return transpose matrix M
    );
    if type=="D" then (
        M = apply(m-3, i -> (1/1)*apply(m, j -> if j==i-1 then -1/1 else if j==i then 2 else if j==i+1 then -1 else 0));
        M = append(M,(1/1)*apply(m, j -> if j==m-3-1 then -1 else if j==m-3 then 2 else if j==m-3+1 then -1 else if j==m-3+2 then -1 else 0));
        M = append(M,(1/1)*apply(m, j -> if j==m-2 then 2 else if j==m-2-1 then -1 else 0));
        M = append(M,(1/1)*apply(m, j -> if j==m-1 then 2 else if j==m-1-2 then -1 else 0));
        return matrix M
    );
    if type=="E" and m==6 then (
        return matrix {{2/1, 0, -1, 0, 0, 0}, {0, 2, 0, -1, 0, 0}, {-1, 0, 2, -1, 0, 0}, {0, -1, -1, 2, -1, 0}, {0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, -1, 2}});  
    if type=="E" and m==7 then (
	return matrix {{2/1, 0, -1, 0, 0, 0, 0}, {0, 2, 0, -1, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0}, {0, -1, -1, 2, -1, 0, 0}, {0, 0, 0, -1, 2, -1, 0}, {0, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 0, -1, 2}});
    if type=="E" and m==8 then (
	return matrix {{2/1, 0, -1, 0, 0, 0, 0, 0}, {0, 2, 0, -1, 0, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0, 0}, {0, -1, -1, 2, -1, 0, 0, 0}, {0, 0, 0, -1, 2, -1, 0, 0}, {0, 0, 0, 0, -1, 2, -1, 0}, {0, 0, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, -1, 2}});
    if type == "F" then return matrix({{2/1,-1,0,0},{-1,2,-2,0},{0,-1,2,-1},{0,0,-1,2}});
    if type == "G" then return matrix({{2/1,-1},{-3,2}});
    ));
--We code what Di Francesco, Mathieu, and Senechal call the quadratic form matrix
--For types A,D,E, it is the inverse of the Cartan matrix.  See paragraph 1, [DMS] p. 498 and (13.51), [DMS] p. 499 
--For the other types Appendix 13.A, [DMS]
quadraticFormMatrix = memoize((type, m) -> ( M:={};
    if type=="A" or type =="D" or type=="E" then return (cartanMatrixQQ(type,m))^-1;
    if type =="B" then (
        M=apply(m-1, i -> append(apply(m-1, j -> if j+1<=i+1 then 2*(j+1) else 2*(i+1 )),i+1));
	M = append(M,append(apply(m-1,j->j+1),m/2));
	return (1/2)*matrix(M) 
	);
    if type =="C" then (
	M=apply(m, i -> apply(m, j -> if j+1<=i+1 then (j+1)/1 else (i+1 )));
	return (1/2)*matrix(M)
	);
    if type =="F" then return matrix {{2,3,2,1},{3,6,4,2},{2,4,3,3/2},{1,2,3/2,1}};
    if type =="G" then return matrix {{2/3,1},{1,2}}
	  ));	 
    
KillingForm = method(
    TypicalValue => QQ
    )     
KillingForm(String,ZZ,List,List) := memoize((type, m, v,w) ->   (
    ((matrix({(1/1)*v})*(quadraticFormMatrix(type,m))*matrix(transpose({(1/1)*w}))) )_(0,0)
));
KillingForm(LieAlgebra,List,List) := memoize((g, v,w) ->   (
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";	  
    (matrix({(1/1)*v})*(quadraticFormMatrix(type,m))*matrix(transpose({(1/1)*w})))_(0,0)
));
 
    
--This function returns the weights in the Weyl alcove
weylAlcove = method(
    TypicalValue => List
    )     
weylAlcove(String,ZZ,ZZ) := memoize((type, m, l) -> ( pl:={};
    if l==0 then return {apply(m, i -> 0)};
    if m==1 then return apply(l+1,i->{i});
    if type=="A" or type == "C" then (
        pl={{append(apply(m-1, i -> 0),l)}};
        for k from 0 to l-1 do (
            pk:=weylAlcove(type,m-1,l-k);
            pk=apply(#pk, q -> append(pk_q,k));
            pl=append(pl,pk));
        return sort flatten pl
    );
    if type != "A" and type != "C" then (
        pl=weylAlcove("A",m,l);    
	Theta :=highestRoot(type,m);
	answer:=delete(null, apply(#pl, i -> if KillingForm(type, m, pl_i, Theta) <= l then pl_i));
        return sort answer
    )
));  
weylAlcove(ZZ,LieAlgebra) := memoize( (l,g)-> (
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";
    weylAlcove(type,m,l) 
))
    
--For definitions and formulas of Casimir scalars, see (13.127), [DMS] p. 512
--For the definition and formula for rho, see: (13.46), [DMS] p. 499
    
casimirScalar = method(
    TypicalValue => QQ
    )     
casimirScalar(String,ZZ,List) := memoize((type, m, w) -> (
    rho:=apply(m,h->1/1);
    KillingForm(type,m,w,w) + 2*KillingForm(type,m,w,rho)
));
casimirScalar(LieAlgebraModule) := memoize((M) -> (
    g:=M#"LieAlgebra";
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";
    v:=M#"highestWeight";
    casimirScalar(type,m,v)	  
));
  
simpleRoots = (type,m) -> (
    C:=cartanMatrixQQ(type,m);     
    entries lift(C,ZZ)    
)
positiveRoots = method(
    TypicalValue => List
)     
--In Freudenthal's formula, we need to sum over the positive roots
positiveRoots(String,ZZ):= memoize((type,m) -> (
    simpleroots:=simpleRoots(type,m);
    answer:={};
    answer1:={};
    es:={};
    es2:={};
    em:={};
    subs:={};
    eiplusej:={};
    if type=="A" then (
	return delete(null, flatten apply(m, i -> apply(m, j -> if j==i then simpleroots_i else if j > i then sum apply(j-i+1, k -> simpleroots_(i+k)))));
    );
    if type=="B" then (
	answer1 = delete(null, flatten apply(m-1, i -> apply(m-1, j -> if j==i then simpleroots_i else if j > i then sum apply(j-i+1, k -> simpleroots_(i+k)))));
        es=apply(m, i -> sum apply(m-i, k -> simpleroots_(m-1-k)));
        subs=subsets(es,2);
        eiplusej=apply(#subs,h -> sum subs_h);
        return flatten {answer1,es,eiplusej}
    );
    if type=="C" then (
	answer1 = delete(null, flatten apply(m-1, i -> apply(m-1, j -> if j==i then simpleroots_i else if j > i then sum apply(j-i+1, k -> simpleroots_(i+k)))));
        twoes:=apply(m, i -> if i<m-1 then sum(apply(m-i-1, k -> 2*simpleroots_(m-2-k)))+ simpleroots_(m-1) else simpleroots_(m-1));
        subs=subsets(twoes,2);
        eiplusej=apply(#subs,h -> sum subs_h);
        eiplusej=apply(#eiplusej,h -> apply(m, t-> lift((1/2)*eiplusej_h_t,ZZ)));
        return flatten {answer1,twoes,eiplusej}
    );
    if type=="D" then (
        answer1 = delete(null, flatten apply(m-1, i -> apply(m-1, j -> if j==i then simpleroots_i else if j > i then sum apply(j-i+1, k -> simpleroots_(i+k)))));
        em=(1/2)*(simpleroots_(m-1)-simpleroots_(m-2));
        em=apply(#em,k-> lift(em_k,ZZ));
        es={em};
        for i from 0 to m-2 do (
            es = append(es,es_(#es-1)+simpleroots_(m-2-i))
        );
        subs=subsets(es,2);
        eiplusej=apply(#subs,h -> sum subs_h);
        return flatten {answer1,eiplusej}
    );
    if type=="E" and m==6 then (
	return {{0, 0, 0, 0, -1, 2}, {0, 0, 0, -1, 1, 1}, {0, -1, -1, 1, 0, 1}, {-1, -1, 1, 0, 0, 1}, {1, -1, 0, 0, 0, 1}, {0, 1, -1, 0, 0, 1}, {-1, 1, 1, -1, 0, 1}, {1, 1, 0, -1, 0, 1}, {-1, 0, 0, 1, -1, 1}, {1, 0, -1, 1, -1, 1}, {-1, 0, 0, 0, 1, 0}, {1, 0, -1, 0, 1, 0}, {1, 0, -1, 1, 0, -1}, {0, 0, 1, 0, 0, -1}, {0, -1, -1, 2, -1, 0}, {-1, -1, 1, 1, -1, 0}, {0, 1, -1, 1, -1, 0}, {-1, 1, 1, 0, -1, 0}, {1, 0, 1, -1, 0, 0}, {0, 2, 0, -1, 0, 0}, {2, 0, -1, 0, 0, 0}, {-1, 0, 2, -1, 0, 0}, {1, 1, 0, 0, -1, 0}, {1, -1, 0, 1, -1, 0}, {-1, 0, 0, 1, 0, -1}, {1, 1, 0, -1, 1, -1}, {1, -1, 0, 0, 1, -1}, {-1, 1, 1, -1, 1, -1}, {-1, -1, 1, 0, 1, -1}, {0, 1, -1, 0, 1, -1}, {0, -1, -1, 1, 1, -1}, {0, 0, 0, -1, 2, -1}, {0, 1, 0, 0, 0, 0}, {0, -1, 0, 1, 0, 0}, {0, 0, 1, -1, 1, 0}, {0, 0, 1, 0, -1, 1}});
    if type=="E" and m==7 then (
	return {{0, 0, 0, 0, 0, -1, 2}, {0, 0, 0, 0, -1, 1, 1}, {0, 0, 0, -1, 1, 0, 1}, {0, -1, -1, 1, 0, 0, 1}, {-1, -1, 1, 0, 0, 0, 1}, {0, 1, -1, 0, 0, 0, 1}, {-1, 1, 1, -1, 0, 0, 1}, {-1, 0, 0, 1, -1, 0, 1}, {-1, 0, 0, 0, 1, -1, 1}, {-1, 0, 0, 0, 0, 1, 0}, {1, -1, 0, 0, 0, 0, 1}, {1, 1, 0, -1, 0, 0, 1}, {1, 0, -1, 1, -1, 0, 1}, {1, 0, -1, 0, 1, -1, 1}, {1, 0, -1, 0, 0, 1, 0}, {0, 0, 1, 0, -1, 1, -1}, {0, 0, 1, -1, 1, 0, -1}, {0, -1, 0, 1, 0, 0, -1}, {0, 1, 0, 0, 0, 0, -1}, {0, 0, 0, -1, 2, -1, 0}, {0, -1, -1, 1, 1, -1, 0}, {0, 1, -1, 0, 1, -1, 0}, {-1, -1, 1, 0, 1, -1, 0}, {-1, 1, 1, -1, 1, -1, 0}, {1, -1, 0, 0, 1, -1, 0}, {1, 1, 0, -1, 1, -1, 0}, {-1, 0, 0, 1, 0, -1, 0}, {1, -1, 0, 1, -1, 0, 0}, {1, 1, 0, 0, -1, 0, 0}, {-1, 0, 2, -1, 0, 0, 0}, {2, 0, -1, 0, 0, 0, 0}, {0, 2, 0, -1, 0, 0, 0}, {1, 0, 1, -1, 0, 0, 0}, {-1, 1, 1, 0, -1, 0, 0}, {0, 1, -1, 1, -1, 0, 0}, {-1, -1, 1, 1, -1, 0, 0}, {0, -1, -1, 2, -1, 0, 0}, {0, 0, 1, 0, 0, -1, 0}, {1, 0, -1, 1, 0, -1, 0}, {1, 0, -1, 0, 1, 0, -1}, {-1, 0, 0, 0, 1, 0, -1}, {1, 0, -1, 1, -1, 1, -1}, {-1, 0, 0, 1, -1, 1, -1}, {1, 1, 0, -1, 0, 1, -1}, {-1, 1, 1, -1, 0, 1, -1}, {0, 1, -1, 0, 0, 1, -1}, {1, -1, 0, 0, 0, 1, -1}, {-1, -1, 1, 0, 0, 1, -1}, {0, -1, -1, 1, 0, 1, -1}, {0, 0, 0, -1, 1, 1, -1}, {0, 0, 0, 0, -1, 2, -1}, {1, 0, 0, 0, 0, 0, 0}, {-1, 0, 1, 0, 0, 0, 0}, {0, 0, -1, 1, 0, 0, 0}, {0, 1, 0, -1, 1, 0, 0}, {0, -1, 0, 0, 1, 0, 0}, {0, 1, 0, 0, -1, 1, 0}, {0, 1, 0, 0, 0, -1, 1}, {0, -1, 0, 1, -1, 1, 0}, {0, -1, 0, 1, 0, -1, 1}, {0, 0, 1, -1, 0, 1, 0}, {0, 0, 1, -1, 1, -1, 1}, {0, 0, 1, 0, -1, 0, 1}});
    if type=="E" and m==8 then (
	return {{0, 0, 0, 0, 0, 0, -1, 2}, {0, 0, 0, 0, 0, -1, 1, 1}, {0, 0, 0, 0, -1, 1, 0, 1}, {0, 0, 0, -1, 1, 0, 0, 1}, {0, -1, -1, 1, 0, 0, 0, 1}, {-1, -1, 1, 0, 0, 0, 0, 1}, {0, 1, -1, 0, 0, 0, 0, 1}, {-1, 1, 1, -1, 0, 0, 0, 1}, {-1, 0, 0, 1, -1, 0, 0, 1}, {-1, 0, 0, 0, 1, -1, 0, 1}, {-1, 0, 0, 0, 0, 1, -1, 1}, {1, -1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, -1, 0, 0, 0, 1}, {1, 0, -1, 1, -1, 0, 0, 1}, {1, 0, -1, 0, 1, -1, 0, 1}, {1, 0, -1, 0, 0, 1, -1, 1}, {0, 0, 1, 0, -1, 0, 0, 1}, {0, 0, 1, -1, 1, -1, 0, 1}, {0, 0, 1, -1, 0, 1, -1, 1}, {0, -1, 0, 1, 0, -1, 0, 1}, {0, -1, 0, 1, -1, 1, -1, 1}, {0, 1, 0, 0, 0, -1, 0, 1}, {0, 1, 0, 0, -1, 1, -1, 1}, {0, -1, 0, 0, 1, 0, -1, 1}, {0, 0, 1, 0, -1, 0, 1, -1}, {0, 0, 1, -1, 1, -1, 1, -1}, {0, 0, 1, -1, 0, 1, 0, -1}, {0, -1, 0, 1, 0, -1, 1, -1}, {0, -1, 0, 1, -1, 1, 0, -1}, {0, 1, 0, 0, 0, -1, 1, -1}, {0, 1, 0, 0, -1, 1, 0, -1}, {0, -1, 0, 0, 1, 0, 0, -1}, {0, 1, 0, -1, 1, 0, 0, -1}, {0, 0, -1, 1, 0, 0, 0, -1}, {-1, 0, 1, 0, 0, 0, 0, -1}, {1, 0, 0, 0, 0, 0, 0, -1}, {0, 0, 0, 0, -1, 2, -1, 0}, {0, 0, 0, -1, 1, 1, -1, 0}, {0, -1, -1, 1, 0, 1, -1, 0}, {-1, -1, 1, 0, 0, 1, -1, 0}, {1, -1, 0, 0, 0, 1, -1, 0}, {0, 1, -1, 0, 0, 1, -1, 0}, {-1, 1, 1, -1, 0, 1, -1, 0}, {1, 1, 0, -1, 0, 1, -1, 0}, {-1, 0, 0, 1, -1, 1, -1, 0}, {1, 0, -1, 1, -1, 1, -1, 0}, {-1, 0, 0, 0, 1, 0, -1, 0}, {1, 0, -1, 0, 1, 0, -1, 0}, {1, 0, -1, 1, 0, -1, 0, 0}, {0, 0, 1, 0, 0, -1, 0, 0}, {0, -1, -1, 2, -1, 0, 0, 0}, {-1, -1, 1, 1, -1, 0, 0, 0}, {0, 1, -1, 1, -1, 0, 0, 0}, {-1, 1, 1, 0, -1, 0, 0, 0}, {1, 0, 1, -1, 0, 0, 0, 0}, {0, 2, 0, -1, 0, 0, 0, 0}, {2, 0, -1, 0, 0, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0, 0}, {1, 1, 0, 0, -1, 0, 0, 0}, {1, -1, 0, 1, -1, 0, 0, 0}, {-1, 0, 0, 1, 0, -1, 0, 0}, {1, 1, 0, -1, 1, -1, 0, 0}, {1, -1, 0, 0, 1, -1, 0, 0}, {-1, 1, 1, -1, 1, -1, 0, 0}, {-1, -1, 1, 0, 1, -1, 0, 0}, {0, 1, -1, 0, 1, -1, 0, 0}, {0, -1, -1, 1, 1, -1, 0, 0}, {0, 0, 0, -1, 2, -1, 0, 0}, {0, 1, 0, 0, 0, 0, -1, 0}, {0, -1, 0, 1, 0, 0, -1, 0}, {0, 0, 1, -1, 1, 0, -1, 0}, {0, 0, 1, 0, -1, 1, -1, 0}, {1, 0, -1, 0, 0, 1, 0, -1}, {1, 0, -1, 0, 1, -1, 1, -1}, {1, 0, -1, 1, -1, 0, 1, -1}, {1, 1, 0, -1, 0, 0, 1, -1}, {1, -1, 0, 0, 0, 0, 1, -1}, {-1, 0, 0, 0, 0, 1, 0, -1}, {-1, 0, 0, 0, 1, -1, 1, -1}, {-1, 0, 0, 1, -1, 0, 1, -1}, {-1, 1, 1, -1, 0, 0, 1, -1}, {0, 1, -1, 0, 0, 0, 1, -1}, {-1, -1, 1, 0, 0, 0, 1, -1}, {0, -1, -1, 1, 0, 0, 1, -1}, {0, 0, 0, -1, 1, 0, 1, -1}, {0, 0, 0, 0, -1, 1, 1, -1}, {0, 0, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, 1, -1}, {0, 0, 0, 0, 0, 1, -1, 0}, {0, 0, 0, 0, 1, -1, 0, 0}, {0, 0, 0, 1, -1, 0, 0, 0}, {0, 1, 1, -1, 0, 0, 0, 0}, {0, -1, 1, 0, 0, 0, 0, 0}, {1, 1, -1, 0, 0, 0, 0, 0}, {-1, 1, 0, 0, 0, 0, 0, 0}, {1, -1, -1, 1, 0, 0, 0, 0}, {-1, -1, 0, 1, 0, 0, 0, 0}, {1, 0, 0, -1, 1, 0, 0, 0}, {-1, 0, 1, -1, 1, 0, 0, 0}, {0, 0, -1, 0, 1, 0, 0, 0}, {1, 0, 0, 0, -1, 1, 0, 0}, {-1, 0, 1, 0, -1, 1, 0, 0}, {0, 0, -1, 1, -1, 1, 0, 0}, {0, 1, 0, -1, 0, 1, 0, 0}, {0, -1, 0, 0, 0, 1, 0, 0}, {1, 0, 0, 0, 0, -1, 1, 0}, {-1, 0, 1, 0, 0, -1, 1, 0}, {0, 0, -1, 1, 0, -1, 1, 0}, {0, 1, 0, -1, 1, -1, 1, 0}, {0, 1, 0, 0, -1, 0, 1, 0}, {0, -1, 0, 0, 1, -1, 1, 0}, {0, -1, 0, 1, -1, 0, 1, 0}, {0, 0, 1, -1, 0, 0, 1, 0}, {1, 0, -1, 0, 0, 0, 1, 0}, {-1, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, -1, 1}, {-1, 0, 1, 0, 0, 0, -1, 1}, {0, 0, -1, 1, 0, 0, -1, 1}, {0, 1, 0, -1, 1, 0, -1, 1}});
    if type=="F" and m==4 then (
	return {{0, 0, 0, 1}, {1, 0, 0, -1}, {-1, 1, 0, -1}, {0, -1, 2, -1}, {1, 0, 0, 0}, {-1, 1, 0, 0}, {0, -1, 2, 0}, {0,1,0,-2}, {1,-1,2,-2}, {-1, 0, 2, -2}, {-1, 0, 0, 2}, {1, -1, 0, 2}, {0, 1, -2, 2}, {2, -1, 0, 0}, {1, 1, -2, 0}, {-1, 2, -2, 0}, {0, 0, 1, -1}, {0, 1, -1, 0}, {1, -1, 1, 0}, {1, 0, -1, 1}, {-1, 0, 1, 0}, {-1, 1, -1, 1}, {0, -1, 1, 1}, {0, 0, -1, 2}});
    if type=="G" and m==2 then return {{-3, 2}, {-1, 1}, {0, 1}, {2, -1}, {3, -1}, {1, 0}};
))
positiveRoots(LieAlgebra):=(g) -> (
    positiveRoots(g#"RootSystemType",g#"LieAlgebraRank")  
);
--In the next four functions we implement Freudenthal's recursive algorithm for computing the weights in a Lie algebra module and their multiplicities
--The function Freud computes the set of weights in a Lie algebra module without their multiplicities
Freud = memoize ((type,m,v) -> (
    simpleroots:=simpleRoots(type,m);
    if apply(#v, i -> v_i < 0) == apply(#v, i->true) then return set({v});
    answer:=set {v};
    for i from 0 to #v-1 do (
        if v_i < 0 then continue;
        for j from 1 to lift(v_i,ZZ) do (
            answer= answer+Freud(type,m,v-j*simpleroots_i)
    ));
    answer=toList answer;
    answer=apply(#answer, i -> apply(#(answer_i), j-> lift(answer_i_j,ZZ)));
    set answer
))
--the function weightsAboveMu computes the weights above mu=w in the weight diagram of lambda=v
weightsAboveMu = memoize( (type,m,v,w) -> (
    Omega:=Freud(type,m,v);
    if w==v then return {};
    simpleroots:=simpleRoots(type,m);
    answer:={};
    k:=0;
    for i from 0 to #simpleroots-1 do (
        k=0;
        while isSubset(set {w+k*(simpleroots_i)},Omega) do (
            if k>0 then answer = append(answer,w+k*(simpleroots_i));
            k=k+1;
    ));
    answer=unique answer;
    alllevels:={answer};
    for i from 0 to #answer-1 do (
        alllevels = append(alllevels,weightsAboveMu(type,m,v,answer_i))
    );
    unique flatten alllevels
))
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
-- Exported functions for Lie algebra modules 
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
multiplicityOfWeightInLieAlgebraModule = memoize((type,m,v,w) -> (
    rho:=apply(m, i -> 1);
    if v==w then return 1;
    Omega:=Freud(type,m,v);
    if not member(w,Omega) then return 0;
    L:=weightsAboveMu(type,m,v,w);
    posroots:=positiveRoots(type,m);
    rhs:=0;
    lhs:=1;
    K:=0;
    for a from 0 to #posroots-1 do (
        K=0;
        while isSubset(set {w+K*(posroots_a)},Omega) do (K=K+1);
        if K <= 1 then continue;
        for k from 1 to K-1 do (
            rhs= rhs+KillingForm(type,m,w+k*(posroots_a),posroots_a)*multiplicityOfWeightInLieAlgebraModule(type,m,v,w+k*(posroots_a)) ));
    lhs=KillingForm(type,m,v+rho,v+rho)-KillingForm(type,m,w+rho,w+rho);
    lift(2*rhs/lhs,ZZ)
))
multiplicity(List,LieAlgebraModule) := o -> (w,M) -> (
    W:=weightDiagram(M);
    W#w 
)
weightDiagram = method(
    TypicalValue=>HashTable)
weightDiagram(String,ZZ,List) := memoize((type,m,v) -> (
    Omega:=toList Freud(type,m,v);     
    new HashTable from apply(#Omega, i-> {Omega_i,multiplicityOfWeightInLieAlgebraModule(type,m,v,Omega_i)})     
))
weightDiagram(LieAlgebraModule) := (M) -> (
    if not M#?"isIrreducible" or not M#"isIrreducible" then error "Weight diagrams are currently implemented only for irreducible Lie algebra modules";
    g:=M#"LieAlgebra";
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";
    v:=M#"highestWeight";    
    weightDiagram(type,m,v)
)
dim LieAlgebraModule := M -> (
    Mdecomposition:=pairs(M#"DecompositionIntoIrreducibles");
    Mdecomposition=apply(#Mdecomposition, i -> {irreducibleLieAlgebraModule(Mdecomposition_i_0,M#"LieAlgebra"), Mdecomposition_i_1});
    sum apply(#Mdecomposition, i -> (Mdecomposition_i_1)*(sum values weightDiagram(Mdecomposition_i_0)))
)	  
findOneHighestWeight = (type,m,W) -> (
    DeltaPlus :=positiveRoots(type,m);
    K:=keys W;
    v:={};
    for i from 0 to #K-1 do (
        v=K_i;
        if apply(DeltaPlus, w-> member(w+v,set(K))) == apply(#DeltaPlus, j -> false) then return v   
    );
    error "no highest weights found"
)
--Function to subtract one mutable hash table from another
--In the application below, the answers are all supposed be positive.  This functions throws an error if not
subtractMutableHashTable = (T,U) -> (
    U= pairs U;
    for i from 0 to #U-1 do (
        if T#?(U_i_0) then (
	    if T#(U_i_0) >= U_i_1 then T#(U_i_0) = T#(U_i_0) - U_i_1;
	    if T#(U_i_0) < U_i_1 then error "Can't subtract these hash tables"
	);
	if not (T#?(U_i_0)) then error "Can't subtract these hash tables"
    );
    new MutableHashTable from pairs(U)
)
LieAlgebraModuleFromWeights = method(
    TypicalValue => LieAlgebraModule
    )
LieAlgebraModuleFromWeights(List,LieAlgebra) := (W,g) -> (
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";
    M:=new MutableHashTable from pairs(W);
    mu:=0;
    v:={};
    decompositionData:={};
    --find and peel off irreducibles
    while #M>0 do (
        v=findOneHighestWeight M;     
        mu=M#v;
        decompositionData = append(decompositionData,{v,mu});
        WDv:=weightDiagram v;
        M= subtractMutableHashTable(M,WDv)
    );
    if #decompositionData == 1 and decompositionData_0_0 ==1 then (
        return new LieAlgebraModule from {"LieAlgebra"=>g,"highestWeight"=>decompositionData_0_1,"isIrreducible"=>true,"DecompositionIntoIrreducibles"=>(new HashTable from decompositionData)}  
    );
    new LieAlgebraModule from {"LieAlgebra"=>g,"isIrreducible"=>false,"DecompositionIntoIrreducibles"=>(new HashTable from decompositionData)}
)     
---------------------------------------------------------
---------------------------------------------------------
--Tensor product decomposition
---------------------------------------------------------
--------------------------------------------------------- 
--Action of word in Coxeter group or affine Coxeter group on weights
wordAction = (type,m,l,I,v) -> (
    simpleroots:=simpleRoots(type,m);
    w:=v;
    J:=reverse I; 
    for j from 0 to #J-1 do (     
        if J_j >0 then (
	    rho:=apply(#w, i-> 1);
            w=w+rho;     
            w = w-(w_(J_j-1))*simpleroots_(J_j-1);     
            w=w-rho);
        if J_j ==0 then (
            theta:=highestRoot(type,m);
            theta=apply(#theta, i -> lift(theta_i,ZZ));
            l0:=lift(l-KillingForm(type,m,w,theta),ZZ);
            w = w+(l0+1)*theta);
    );
    w
)
squarefreeWordsOfLengthP = (L,p) -> (
    if p==0 then return {};     
    if p==1 then return apply(#L, i -> {L_i});
    wlm1:=squarefreeWordsOfLengthP(L,p-1);
    answer:=delete(null, flatten apply(#L, i -> apply(#wlm1, j -> if L_i != wlm1_j_0 then prepend(L_i,wlm1_j))));
    answer
)
isIdentity = (type,m,l,w) -> (
    fdw:=apply(m, i -> apply(m, j -> if i==j then 1 else 0));
    apply(m, i -> wordAction(type,m,l,w,fdw_i)) == fdw      
)
tensorReflectionData = memoize( (type,m,maxwordlength,remainingWeights) -> (
    theta:=highestRoot(type,m);
    l:=max apply(#remainingWeights, i -> KillingForm(type,m,remainingWeights_i,theta));	
    l=lift(l,ZZ);
    Pl:=weylAlcove(type,m,l);
    wl:=1;
--initialize;
    remainingWeights=toList(set(remainingWeights)-set(Pl));
    found:= set Pl;
    answer:= set apply(#Pl, i -> {Pl_i,{}});
    fixed:={};
    S:=apply(m,i->i+1);
    while #remainingWeights >0 and wl<=maxwordlength do (
        words:=squarefreeWordsOfLengthP(S,wl);
        for i from 0 to #words-1 do (
            if isIdentity(type,m,l,words_i) then continue;
            newremainingWeights:={};
            for j from 0 to #remainingWeights-1 do ( 
                if wordAction(type,m,l,words_i,remainingWeights_j)==remainingWeights_j then (
                    answer = answer + set {{remainingWeights_j,reverse(words_i)}};
                    fixed = append(fixed,remainingWeights_j)) 
	        else newremainingWeights=append(newremainingWeights,remainingWeights_j)   
            );
            remainingWeights=newremainingWeights;
--image of basis under words_i
            im:=apply(#Pl, j -> wordAction(type,m,l,words_i,Pl_j));
            if member(im,found) then continue else (
                found = found + set(im);
                remainingWeights=toList(set(remainingWeights)-set(im));
                answer=answer+set apply(#im, k -> {im_k,reverse(words_i)});
            ));
            wl=wl+1);
    if #remainingWeights==0 then return {sort toList(answer),sort fixed,true,remainingWeights} else return {sort toList(answer), sort fixed,false,remainingWeights}
))
LieAlgebraModule ** LieAlgebraModule := memoize( (V,W) -> (
    if V#"LieAlgebra" != W#"LieAlgebra" then error "V and W must be modules over the same Lie algebra";	  
    g:=V#"LieAlgebra"; 
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";	  
    posRoots:=positiveRoots(type,m);
    wl:=#posRoots;	  
    lambda:=V#"highestWeight";
    mu:=W#"highestWeight";
    wd:=pairs weightDiagram(type,m,lambda);
    theta:=highestRoot(type,m);
    l:=max apply(#wd, i -> KillingForm(type,m,wd_i_0,theta));
    l=lift(l,ZZ);	  
    Pl:=weylAlcove(type,m,l);
    wd=apply(#wd, i -> {wd_i_0+mu,wd_i_1});
    rd:=tensorReflectionData(type,m,wl,apply(#wd, i -> wd_i_0));
    if rd_2 == false then error "Need to allow longer words";
    fixed:=rd_1;
    rd=hashTable(rd_0);
    wtsinPl:=delete(null, apply(#wd, i -> if member(wd_i_0,Pl) and not member(wd_i_0,fixed) then wd_i));     
    wdh:=new MutableHashTable from wtsinPl;
    for i from 0 to #wd-1 do (
        if member(wd_i_0,Pl) then continue;     
        if member(wd_i_0,fixed) then continue;
        word:=rd#(wd_i_0);
        e:=#word;
        e=(-1)^e;
        im:=wordAction(type,m,l,word,wd_i_0);
        if not wdh#?im  then  wdh#im = (e)*(wd_i_1) else  wdh#im = wdh#im + (e)*(wd_i_1)     
    );
    wdh=pairs(wdh);
    newwdh:=delete(null, apply(#wdh, i -> if wdh_i_1 != 0 then wdh_i));
    newdim:=(dim V)*(dim W);
    if #newwdh == 1 and newwdh_0_1 == 1 then return irreducibleLieAlgebraModule(newwdh_0_0,g);
    return new LieAlgebraModule from {"LieAlgebra"=>g,"DecompositionIntoIrreducibles"=>new HashTable from newwdh,"isIrreducible"=>false};
))
tensorCoefficient = method(
    TypicalValue=>ZZ)
tensorCoefficient(LieAlgebraModule, LieAlgebraModule,LieAlgebraModule) := memoize((U,V,W) -> (
    nu:=W#"highestWeight";	  
    fullTensorProduct:=(U**V)#"DecompositionIntoIrreducibles";
    if fullTensorProduct#?nu then return lift(fullTensorProduct#nu,ZZ) else return 0     
    ))
---------------------------------------------------------
---------------------------------------------------------
--Fusion product decomposition
---------------------------------------------------------
--------------------------------------------------------- 
fusionReflectionData = memoize( (type,m,l,maxwordlength,remainingWeights) -> (
    Pl:=weylAlcove(type,m,l);
    wl:=1;
    --initialize;
    remainingWeights=toList(set(remainingWeights)-set(Pl));
    found:= set Pl;
    answer:= set apply(#Pl, i -> {Pl_i,{}});
    fixed:={};
    S:=apply(m+1,i->i);
    while #remainingWeights >0 and wl<=maxwordlength do (
        words:=squarefreeWordsOfLengthP(S,wl);
        for i from 0 to #words-1 do (
            if isIdentity(type,m,l,words_i) then continue;
            newremainingWeights:={};
            for j from 0 to #remainingWeights-1 do (
                if wordAction(type,m,l,words_i,remainingWeights_j)==remainingWeights_j then (
                    answer = answer + set {{remainingWeights_j,reverse(words_i)}};
                    fixed = append(fixed,remainingWeights_j)) else newremainingWeights=append(newremainingWeights,remainingWeights_j)   
            );
            remainingWeights=newremainingWeights;
            im:=apply(#Pl, j -> wordAction(type,m,l,words_i,Pl_j));
            if member(im,found) then continue else (
                found = found + set(im);
                remainingWeights=toList(set(remainingWeights)-set(im));
                answer=answer+set apply(#im, k -> {im_k,reverse(words_i)});
            )
        );
        wl=wl+1);
    if #remainingWeights==0 then return {sort toList(answer),sort fixed,true,remainingWeights} else return {sort toList(answer), sort fixed,false,remainingWeights}
))
fusionProduct = method(
    TypicalValue=>HashTable,Options=>{MaxWordLength=>10})
fusionProduct(LieAlgebraModule,LieAlgebraModule,ZZ) := memoize( opts-> (M,N,l) -> (
    wl:= opts.MaxWordLength;	 
    if M#"LieAlgebra" != N#"LieAlgebra" then error "The Lie algebra modules must be over the same Lie algebra.";
    g:=M#"LieAlgebra";
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";
    lambda:=M#"highestWeight";
    mu:=N#"highestWeight";
    wd:=pairs weightDiagram(type,m,lambda);
    wd=apply(#wd, i -> {wd_i_0+mu,wd_i_1});
    rd:=fusionReflectionData(type,m,l,wl,apply(#wd, i -> wd_i_0));
    if rd_2 == false then error "Need to allow longer words";
    fixed:=rd_1;
    rd=hashTable(rd_0);
    Pl:=weylAlcove(type,m,l);
    wtsinPl:=delete(null, apply(#wd, i -> if member(wd_i_0,Pl) and not member(wd_i_0,fixed) then wd_i));     
    wdh:=new MutableHashTable from wtsinPl;
    for i from 0 to #wd-1 do (
        if member(wd_i_0,Pl) then continue;     
        if member(wd_i_0,fixed) then continue;
        word:=rd#(wd_i_0);
        e:=#word;
        e=(-1)^e;
        im:=wordAction(type,m,l,word,wd_i_0);
        wdh#im = wdh#im + (e)*(wd_i_1)     
    );
    wdh=pairs(wdh);
    newwdh:=delete(null, apply(#wdh, i -> if wdh_i_1 != 0 then wdh_i));
    if #newwdh == 1 and newwdh_0_1 == 1 then return irreducibleLieAlgebraModule(newwdh_0_0,simpleLieAlgebra(type,m));
    return new LieAlgebraModule from {"LieAlgebra"=>simpleLieAlgebra(type,m),"DecompositionIntoIrreducibles"=>new HashTable from newwdh,"isIrreducible"=>false};	  
))
fusionCoefficient=method(
    TypicalValue=>ZZ,Options=>{MaxWordLength=>10})
fusionCoefficient(LieAlgebraModule,LieAlgebraModule,LieAlgebraModule,ZZ) := memoize(opts -> (U,V,W,l) -> (
    wl:=opts.MaxWordLength;	  
    g:=U#"LieAlgebra";
    type:=g#"RootSystemType";
    m:=g#"LieAlgebraRank";
    fullFusionProduct:=(fusionProduct(U,V,l,MaxWordLength=>wl))#"DecompositionIntoIrreducibles";
    if fullFusionProduct#?(W#"highestWeight") then return lift(fullFusionProduct#(W#"highestWeight"),ZZ) else return 0     
))
beginDocumentation()
doc ///
    Key
       LieTypes
    Headline
       Common types for Lie groups and Lie algebras
    Description
        Text 
            This package defines types used by the ConformalBlocks package and may someday be used by other packages as well.  If you would like to see a type or function added to this package (or better yet, if you would like to write types or functions for this package), please contact Dan Grayson, Mike Stillman, or Dave Swinarski.  
///
doc ///
    Key
       LieAlgebra
    Headline
        class for Lie algebras
    Description
        Text 
    	    This class represents Lie algebras.  Currently only simple Lie algebras over the complex numbers are supported.  An object of type LieAlgebra is a hash table whose keys record whether the Lie algebra is simple, the rank of the Lie algebra, and the type of the root system.
	     
        Example
	    g=simpleLieAlgebra("A",1)
	    g=simpleLieAlgebra("E",6)                    
///
doc ///
    Key
        simpleLieAlgebra
	(simpleLieAlgebra,String,ZZ)
    Headline
        construct a simple Lie algebra
    Usage
        simpleLieAlgebra("A",1)
    Inputs
        t:String
            the type of the root system of the desired Lie algebra
        k:ZZ
            the rank of the desired Lie algebra
    Outputs
        g:LieAlgebra
            the simple Lie algebra with the given rank and type	        
    Description
        Text
            The classification of simple Lie algebras over the complex numbers is well known.  There are four infinite families (types A, B, C, D) corresponding to the Lie algebras $sl(n+1,\mathbb{C})$, $so(2n+1,\mathbb{C})$, $sp(2n,\mathbb{C})$, $so(2n,\mathbb{C})$ respectively, and five exceptional simple Lie algebras, E6, E7, E8, F4, G2.  
	    	   
        Example
            --simpleLieAlgebra(sl_2)
	    simpleLieAlgebra("A",1)
	    --simpleLieAlgebra(sp_10)
	    simpleLieAlgebra("E",6)
///	 	 
TEST ///
    assert(simpleLieAlgebra("A",1) === new LieAlgebra from {"LieAlgebraRank"=>1,"RootSystemType"=>"A","isSimple"=>true} )
///
doc ///
    Key
	(symbol ==, LieAlgebra, LieAlgebra)
    Headline
        tests equality of LieAlgebra
    Usage
        g == h
    Inputs
        g:LieAlgebra
	h:LieAlgebra
    Outputs
        b:Boolean
    Description
        Text
	    This function tests equality of the underlying hash tables of $g$ and $h$ are the same.    
	       
        Example
	    g=simpleLieAlgebra("A",2)
	    h=simpleLieAlgebra("A",2)
	    g==h
///
TEST ///
    assert(simpleLieAlgebra("A",2) == simpleLieAlgebra("A",2))
///
doc ///
    Key
        dualCoxeterNumber
	(dualCoxeterNumber,LieAlgebra)
	(dualCoxeterNumber,String,ZZ)
    Headline
        returns the dual Coxeter number of a simple Lie algebra
    Usage
        dualCoxeterNumber(g)
    Inputs
        g:LieAlgebra
	    a simple Lie algebra
    Outputs
        n:ZZ
	    the dual Coxeter number of g
    Description
        Text
	    The dual Coxeter number is defined as the sum of the comarks plus 1.  See Di Francesco, Mathieu, and Senechal, {\it Conformal Field Theory}, Springer Graduate Texts in Theoretical Physics, Formula (13.35) and Appendix A.
	      
        Example
	    dualCoxeterNumber("A",2)	
	    g=simpleLieAlgebra("A",2)
	    dualCoxeterNumber(g)
///
TEST ///
    assert(dualCoxeterNumber("A",2) === 3)
///
doc ///
    Key
        highestRoot
	(highestRoot,String,ZZ)
	(highestRoot,LieAlgebra)
    Headline
        returns the highest root of a simple Lie algebra
    Usage
        highestRoot(g), highestRoot("A",2)
    Inputs
        g:LieAlgebra
    Outputs
        t:List
    Description
        Text  
            Let R be an irreducible root system of rank m, and choose a base of simple roots $\Delta = \{\alpha_1,...,\alpha_m\}$.  Then there is a unique root $\theta$ such that when $\theta$ is expanded in terms of the simple roots, i.e. $\theta= \sum c_i \alpha_i$, the sum $\sum c_i$ is maximized.  The formulas implemented here are taken from the tables following Bourbaki's {\it Lie Groups and Lie Algebras} Chapter 6.
	    
	Text       
	    In the example below, we see that for $sl_3$, the highest root $\theta$ is $\omega_1+ \omega_2$, where $\omega_1$ and $\omega_2$ are the fundamental dominant weights.
	    
	Example
	    highestRoot("A",2)
///
TEST ///
    assert(highestRoot("A",2) === {1,1})
///	
doc ///
    Key
        positiveRoots
	(positiveRoots,String,ZZ)
	(positiveRoots,LieAlgebra)
    Headline
        returns the positive roots of a simple Lie algebra
    Usage
        positiveRoots(g), positiveRoots("A",2)
    Inputs
        g:LieAlgebra
    Outputs
        t:List
    Description
        Text  
            Let R be an irreducible root system of rank m, and choose a base of simple roots $\Delta = \{\alpha_1,...,\alpha_m\}$.  This function returns all the roots that are nonnegative linear combinations of the simple roots.    The formulas implemented here are taken from the tables following Bourbaki's {\it Lie Groups and Lie Algebras} Chapter 6.
	    
	Text       
	    In the example below, we see that for $sl_3$, the positive roots are $\alpha_1$, $\alpha_2$, and $\alpha_1+\alpha_2$.
	    
	Example
	    sl3=simpleLieAlgebra("A",2)
	    positiveRoots(sl3)
///
TEST ///
    assert(set positiveRoots(simpleLieAlgebra("A",2)) === set {{2, -1}, {1, 1}, {-1, 2}})
///	
doc ///
    Key
        starInvolution
	(starInvolution,List,LieAlgebra)
	(starInvolution,String,ZZ,List)
    Headline
        computes w* for a weight w
    Usage
        starInvolution(w,g)
    Inputs
        w:List
	g:LieAlgebra
    Description
        Text
	    Let $\mathbf{g}$ be a Lie algebra.  We give three equivalent descriptions of an involution * on the weights of $\mathbf{g}$: 
	    
	Text 
	    1. The involution * is given by $-w_0$, where $w_0$ is the longest word in the Weyl group $W(\mathbf{g})$.
		  
	Text
	    2. If $\mu$ is a dominant integral weight, and $V_{\mu}$ is the irreducible Lie algebra module with highest weight $\mu$, then $\mu^*$ is the highest weight of the dual module $(V_{\mu})^*$.
		  
	Text 
	    3. If the Dynkin diagram of $\mathbf{g}$ has an involution, then * corresponds to the action of this involution on weights.
		  
        Text
            The formulas implemented have been adapted from Di Francesco, Mathieu, and Senechal, {\it Conformal Field Theory}, Springer Graduate Texts in Theoretical Physics, p. 511.  Some changes are needed because we use the Bourbaki ordering of the roots in type E instead of the [DMS] ordering.
	       
	Text     
	    In the example below, we see that for $sl_3$, $\omega_1^* = \omega_2.$
        
	Example
	     g=simpleLieAlgebra("A",2)
	     starInvolution({1,0},g)
///
TEST ///
    g=simpleLieAlgebra("A",2)
    assert(starInvolution({1,0},g) === {0,1})
///
doc ///
    Key
        KillingForm
	(KillingForm,LieAlgebra,List,List)
	(KillingForm,String,ZZ,List,List)
    Headline 
        computes the scaled Killing form applied to two weights
    Usage 
        KillingForm(g,v,w)
    Inputs 
        g:LieAlgebra
	v:List
	w:List
    Description
        Text
	    Let $\mathbf{g}$ be a Lie algebra.  The Killing form on $\mathbf{g}$ is the symmetric bilinear form given by $(x,y) = Tr(ad x ad y)$.  It can restricted to a Cartan subalgebra $\mathbf{h}$ and transferred to $\mathbf{h}^*$, yielding a symmetric bilinear form on weights.  One popular convention is to scale the Killing form so that $(\theta,\theta) =2$, where $\theta$ is the highest root.
	    
        Example
            g=simpleLieAlgebra("A",2)
	    KillingForm(g,{1,0},{0,1})
///
TEST ///
    g=simpleLieAlgebra("A",2)
    assert(KillingForm(g,{1,0},{0,1}) === 1/3)
///	
	
doc ///
    Key
        weylAlcove
	(weylAlcove,String,ZZ,ZZ)
	(weylAlcove,ZZ,LieAlgebra)
    Headline 
        the dominant integral weights of level less than or equal to l
    Usage 
        weylAlcove(l,g)
    Inputs 
        l:ZZ
        g:LieAlgebra
    Description
        Text
            Let $\mathbf{g}$ be a Lie algebra, and let $l$ be a nonnegative integer.  Choose a Cartan subalgebra $\mathbf{h}$ and a base $\Delta= \{ \alpha_1,\ldots,\alpha_n\}$ of simple roots of $\mathbf{g}$.  These choices determine a highest root $\theta$. (See @TO highestRoot@).   Let $\mathbf{h}_{\mathbf{R}}^*$ be the real span of $\Delta$, and let $(,)$ denote the Killing form, normalized so that $(\theta,\theta)=2$.  The fundamental Weyl chamber is $C^{+} = \{ \lambda \in \mathbf{h}_{\mathbf{R}}^*  : $(\lambda,\alpha_i)$ >= 0, i=1,\ldots,n \}$.  The fundamental Weyl alcove is the subset of the fundamental Weyl chamber such that $(\lambda,\theta) \leq l$.  This function computes the set of integral weights in the fundamental Weyl alcove.  
	    
        Text
            In the example below, we see that the Weyl alcove of $sl_3$ at level 3 contains 10 integral weights.
	    
	Example 
	    g=simpleLieAlgebra("A",2)
	    weylAlcove(3,g)
///
TEST ///
    g=simpleLieAlgebra("A",2)
    assert(set(weylAlcove(3,g)) ===set {{0, 0}, {1, 0}, {0, 1}, {1, 1}, {2, 0}, {2, 1}, {0, 2}, {1, 2}, {3, 0}, {0, 3}}) 
///	
	
doc ///
    Key
        LieAlgebraModule
    Headline
        class for Lie algebra modules
    Description
        Text 
    	    This class represents Lie algebra modules.  Currently only modules over simple Lie algebras over the complex numbers are supported.  An object of type LieAlgebraModule is a hash table recording the Lie algebra and the decomposition of the module into irreducible Lie algebra modules, which are indexed by their highest weights. 
	    
	Example
	    g=simpleLieAlgebra("A",2)
	    M=irreducibleLieAlgebraModule({1,1},g)                   
///
doc ///
    Key
        irreducibleLieAlgebraModule
	(irreducibleLieAlgebraModule,List,LieAlgebra)
    Headline
        construct the irreducible Lie algebra module with given highest weight
    Usage
        irreducibleLieAlgebraModule(w,g)
    Inputs
        w:List
	    the highest weight of the desired module
	g:LieAlgebra     
    Outputs
        M:LieAlgebraModule
    Description
        Text
            This function creates the irreducible Lie algebra module with a given highest weight.
        
	Example
	    g=simpleLieAlgebra("A",2)
            irreducibleLieAlgebraModule({1,1},g)
///
TEST ///
    assert(irreducibleLieAlgebraModule({1,1},simpleLieAlgebra("A",2)) === new LieAlgebraModule from {"LieAlgebra"=>simpleLieAlgebra("A",2),"highestWeight"=>{1,1}, "DecompositionIntoIrreducibles"=>new HashTable from {{1,1}=>1}, "isIrreducible"=>true})
///	
		
doc ///
    Key 
	(multiplicity,List,LieAlgebraModule)
    Headline
        compute the multiplicity of a weight in a Lie algebra module
    Usage
        multiplicity(v,M)
    Inputs
        v:List
	M:LieAlgebraModule
    Outputs
        k:ZZ
    Description
        Text
	    This function implements Freudenthal's recursive algorithm; see Humphreys, {\it Introduction to Lie Algebras and Representation Theory}, Section 22.3. This function returns the multiplicity of the weight v in the irreducible Lie algebra module M.  For Type A (that is, $g = sl_k$), these multiplicities are related to the Kostka numbers (though in this package, irreducible representations are indexed by the Dynkin labels of their highest weights, rather than by partitions).      
	       
	Text     
	    The example below shows that the $sl_3$ module with highest weight $(2,1)$ contains the weight $(-1,1)$ with multiplicity 2.
         
	Example
	    g=simpleLieAlgebra("A",2)
	    V=irreducibleLieAlgebraModule({2,1},g)
	    multiplicity({-1,1},V)
    SeeAlso
        weightDiagram
	     
///
TEST ///
    assert(multiplicity({-1,1},irreducibleLieAlgebraModule({2,1},simpleLieAlgebra("A",2))) === 2)
///
doc ///
    Key
	(dim,LieAlgebraModule)
    Headline
        computes the dimension of a Lie algebra module as a vector space over the ground field
    Usage
        dim(V)
    Inputs 
        V:LieAlgebraModule
    Outputs
        k:ZZ
    Description
        Example
	    g=simpleLieAlgebra("A",2)
	    V=irreducibleLieAlgebraModule({1,0},g)
	    dim(V)
///
TEST ///
    g=simpleLieAlgebra("A",2)
    V=irreducibleLieAlgebraModule({1,0},g)  
    assert(dim(V) === 3)
///
doc ///
    Key
        weightDiagram
	(weightDiagram,LieAlgebraModule)
	(weightDiagram,String,ZZ,List)
    Headline
        computes the weights in a Lie algebra module and their multiplicities
    Usage
        weightDiagram(V)
    Inputs
        V:LieAlgebraModule
    Outputs
        T:HashTable
    Description
        Text
	    This function implements Freudenthal's recursive algorithm; see Humphreys, {\it Introduction to Lie Algebras and Representation Theory}, Section 22.3.  Let $V$ be the irreducible $\mathbf{g}$-module with highest weight $v$.  This function returns a hash table whose keys are the weights appearing in $V$ and whose values are the multiplicities of these weights.  The character of $V$ can be easily computed from this information (but characters of Lie algebra modules have not been implemented in this version of LieTypes).  
	     
        Example
	     g=simpleLieAlgebra("A",2)
	     V=irreducibleLieAlgebraModule({2,1},g)
	     weightDiagram(V)
	     
    SeeAlso
        (multiplicity,List,LieAlgebraModule)     
///
TEST ///
    assert(weightDiagram(irreducibleLieAlgebraModule({2,1},simpleLieAlgebra("A",2))) === new HashTable from {{{-1, 1}, 2}, {{1, 0}, 2}, {{3, -1}, 1}, {{-2, 0}, 1}, {{0, -1}, 2}, {{2, -2}, 1}, {{-2, 3}, 1}, {{0, 2}, 1}, {{2, 1}, 1}, {{-1, -2}, 1}, {{1, -3}, 1}, {{-3, 2}, 1}})
///	
	
doc ///
    Key
	(symbol **, LieAlgebraModule, LieAlgebraModule)
    Headline
        tensor product of LieAlgebraModules
    Usage
        U ** V
    Inputs
        U:LieAlgebraModule
	V:LieAlgebraModule
    Outputs
        W:LieAlgebraModule
    Description
        Text
	    Computes the tensor product of two Lie algebra modules.  
	       
        Example
	    g=simpleLieAlgebra("A",2)
	    U=irreducibleLieAlgebraModule({4,2},g)
	    V=irreducibleLieAlgebraModule({3,1},g)
	    U**V
	    
    SeeAlso
        tensorCoefficient
///
TEST ///
    assert(irreducibleLieAlgebraModule({2,1},simpleLieAlgebra("A",2)) ** irreducibleLieAlgebraModule({1,2},simpleLieAlgebra("A",2)) === new LieAlgebraModule from {"LieAlgebra"=>simpleLieAlgebra("A",2),"isIrreducible"=>false, ,"DecompositionIntoIrreducibles"=>new HashTable from {{{1, 1}, 2}, {{3, 0}, 1}, {{1, 4}, 1}, {{3, 3}, 1}, {{0, 0}, 1}, {{0, 3}, 1}, {{2, 2}, 2}, {{4, 1}, 1}} })
///
doc ///
    Key
	(symbol ++, LieAlgebraModule, LieAlgebraModule)
    Headline
        direct sum of LieAlgebraModules
    Usage
        U ++ V
    Inputs
        U:LieAlgebraModule
	V:LieAlgebraModule
    Outputs
        W:LieAlgebraModule
    Description
        Text
	    Computes the direct sum of two Lie algebra modules.  
	    
        Example
	    g=simpleLieAlgebra("A",2)
	    U=irreducibleLieAlgebraModule({4,2},g)
	    V=irreducibleLieAlgebraModule({3,1},g)
	    U++V
///
TEST ///
    assert(irreducibleLieAlgebraModule({2,1},simpleLieAlgebra("A",2)) ** irreducibleLieAlgebraModule({1,2},simpleLieAlgebra("A",2)) === new LieAlgebraModule from {"LieAlgebra"=>simpleLieAlgebra("A",2),"isIrreducible"=>false, ,"DecompositionIntoIrreducibles"=>new HashTable from {{{1, 1}, 2}, {{3, 0}, 1}, {{1, 4}, 1}, {{3, 3}, 1}, {{0, 0}, 1}, {{0, 3}, 1}, {{2, 2}, 2}, {{4, 1}, 1}} })
///
doc ///
    Key
        tensorCoefficient
	(tensorCoefficient,LieAlgebraModule,LieAlgebraModule,LieAlgebraModule)     
    Headline
        computes the multiplicity of W in U tensor V
    Usage
        tensorCoefficient(U,V,W)
    Inputs
        U:LieAlgebraModule
	V:LieAlgebraModule
	W:LieAlgebraModule
    Outputs
        k:ZZ
    Description
        Text
	    This function implements the Racah-Speiser algorithm; see Di Francesco, Mathieu, and Senechal, {\it Conformal Field Theory}, Springer Graduate Texts in Theoretical Physics, Section 13.5.2. 
	       
	Text     
	    Given three irreducible Lie algebra modules $U$, $V$, and $W$, the function returns the multiplicity of $W$ in $U \otimes V$.  In Type A, these are related to the Littlewood-Richardson coefficients (though in this package, irreducible representations are indexed by the Dynkin labels of their highest weights, rather than by partitions).  
	   
        Text
	    The example below shows that for $g=sl_3$ and $\lambda=2 \omega_1 + \omega_2$, $\mu= \omega_1 + 2 \omega_2$, and $\nu= 2 \omega_1 + 2 \omega_2$, the tensor product of $sl_3$ modules $V_{\lambda} \otimes V_{\mu}$ contains two copies of $V_{\nu}$.
	       
        Example
	    g=simpleLieAlgebra("A",2)
	    U=irreducibleLieAlgebraModule({2,1},g)
	    V=irreducibleLieAlgebraModule({1,2},g)
	    W=irreducibleLieAlgebraModule({2,2},g)
	    tensorCoefficient(U,V,W)
    SeeAlso
        (symbol **, LieAlgebraModule, LieAlgebraModule)
///
TEST ///
    g=simpleLieAlgebra("A",2);
    U=irreducibleLieAlgebraModule({2,1},g);
    V=irreducibleLieAlgebraModule({1,2},g);
    W=irreducibleLieAlgebraModule({2,2},g);
    assert(tensorCoefficient(U,V,W) === 2)         
///
		
doc ///
    Key
        fusionCoefficient
	(fusionCoefficient,LieAlgebraModule,LieAlgebraModule,LieAlgebraModule,ZZ)     
    Headline
        computes the multiplicity of W in the fusion product of U and V
    Usage
        fusionCoefficient(U,V,W,l)
    Inputs
        U:LieAlgebraModule
	V:LieAlgebraModule
	W:LieAlgebraModule
        l:ZZ	
    Description
        Text
	    This function implements the Kac-Walton algorithm; see Di Francesco, Mathieu, and Senechal, {\it Conformal Field Theory}, Springer Graduate Texts in Theoretical Physics, Section 16.2.2.  
	    
	Text    
	    Given three irreducible Lie algebra modules $U$, $V$, and $W$, the function returns the multiplicity of $W$ in the fusion product of $U$ and $V$ at level $l$.  (We are abusing notation and terminology a little here; the fusion product is really a product for modules over an affine Lie algebra.  However, since the Kac-Walton algorithm is defined entirely using the combinatorics of the root system of the underlying finite-dimensional Lie algebra, we may therefore use the Kac-Walton algorithm to define a product on Lie algebra modules as well.)
       
	Text 
           The Weyl group of a simple Lie algebra is finite; in contrast, the affine Weyl group of an affine Lie algebra is infinite.  To keep Macaulay2 from trying to compute infinitely long words in this group, the default length of allowed words is set to 10.   The user may override this with the optional argument @TO "MaxWordLength"@. 
       
	Text
	    The example below shows that for $g=sl_3$ and $\lambda=2 \omega_1 + \omega_2$, $\mu= \omega_1 + 2 \omega_2$, and $\nu= \omega_1 +  \omega_2$, the level 3 fusion product  $V_{\lambda} \otimes_3  V_{\mu}$ contains one copy of $V_{\nu}$.
	    
        Example
	    g=simpleLieAlgebra("A",2);
	    U=irreducibleLieAlgebraModule({2,1},g);
	    V=irreducibleLieAlgebraModule({1,2},g);
	    W=irreducibleLieAlgebraModule({1,1},g);
	    fusionCoefficient(U,V,W,3)
///
doc ///
    Key
        fusionProduct
	(fusionProduct,LieAlgebraModule,LieAlgebraModule,ZZ)     
    Headline
        computes the multiplicities of irreducibles in the decomposition of the fusion product of U and V
    Usage
        fusionProduct(U,V,l)
    Inputs
        U:LieAlgebraModule
	V:LieAlgebraModule
        l:ZZ
    Description
        Text
	    This function implements the Kac-Walton algorithm; see Di Francesco, Mathieu, and Senechal, {\it Conformal Field Theory}, Springer Graduate Texts in Theoretical Physics, Section 16.2.2.  
	    
 	Text   
	    Given two irreducible Lie algebra modules $U$ and $V$, the function returns the fusion product of $U$ and $V$ at level $l$.  (We are abusing notation and terminology a little here; the fusion product is really a product for modules over an affine Lie algebra.  However, since the Kac-Walton algorithm is defined entirely using the combinatorics of the root system of the underlying finite-dimensional Lie algebra, we may therefore use the Kac-Walton algorithm to define a product on Lie algebra modules as well.)  
	    
        Text 
            The Weyl group of a simple Lie algebra is finite; in contrast, the affine Weyl group of an affine Lie algebra is infinite.  To keep Macaulay2 from trying to compute infinitely long words in this group, the default length of allowed words is set to 10.   The user may override this with the optional argument @TO "MaxWordLength"@. 
	    
        Text
	    The example below shows that for $g=sl_3$ and $\lambda=2 \omega_1 + \omega_2 = (2,1)$, $\mu= \omega_1 + 2 \omega_2 = (1,2)$, the level 3 fusion product  $V_{(2,1)} \otimes_3  V_{(1,2)}$ contains one copy of $V_{(0,0)}$ and one copy of $V_{(1,1)}$.
	    
        Example
	    g=simpleLieAlgebra("A",2);
	    U=irreducibleLieAlgebraModule({2,1},g);
	    V=irreducibleLieAlgebraModule({1,2},g);
	    fusionProduct(U,V,3)
///
TEST ///
    g=simpleLieAlgebra("A",2);
    U=irreducibleLieAlgebraModule({2,1},g);
    V=irreducibleLieAlgebraModule({1,2},g);
    W=irreducibleLieAlgebraModule({1,1},g);
    assert(fusionCoefficient(U,V,W,3) === 1)         
///
doc ///
    Key
        casimirScalar
	(casimirScalar,LieAlgebraModule)
	(casimirScalar,String,ZZ,List)
    Headline
        computes the scalar by which the Casimir operator acts on an irreducible Lie algebra module
    Usage
        casimirScalar(V)
    Inputs 
        V:LieAlgebraModule
    Outputs
        k:QQ
    Description
        Text
	    The Casimir operator is an element of the universal enveloping algebra that acts by a scalar on each irreducible Lie algebra module.  One has $c(\mu) = (\mu,\mu) + 2(\mu,\rho)$, where $\rho$ is half the sum of the positive weights and (,) is the Killing form scaled so that $(\theta,\theta)=2$, where $\theta$ is the highest root.  See Di Francesco, Mathieu, and Senechal, {\it Conformal Field Theory}, Springer Graduate Texts in Theoretical Physics, (13.127) p. 512, and (13.46) p. 499.
	    
	Text     
            In the example below, we see that the Casimir operator acts as multiplication by 8/3 on the standard representation of $sl_3$.  
         
	Example
	    g=simpleLieAlgebra("A",2)
	    V=irreducibleLieAlgebraModule({1,0},g)
	    casimirScalar(V)
///
TEST ///
    g=simpleLieAlgebra("A",2)
    V=irreducibleLieAlgebraModule({1,0},g)
    assert(casimirScalar(V) === 8/3)
///
doc ///
    Key
        isIsomorphic
	(isIsomorphic,LieAlgebraModule,LieAlgebraModule)
    Headline
        tests whether two Lie algebra modules are isomorphic
    Usage
        isIsomorphic(V,W)
    Inputs
        V:LieAlgebraModule
	W:LieAlgebraModule
    Outputs
        b:Boolean
    Description
        Text
	    To test whether two Lie algebra modules are isomorphic, we first test whether they are modules over the same Lie algebra, and if so, then test whether they have the same decomposition into irreducible Lie algebra modules.
        
	Example
	    g=simpleLieAlgebra("A",2)
	    M=irreducibleLieAlgebraModule({2,1},g)
	    N=irreducibleLieAlgebraModule({1,2},g)
	    Z=irreducibleLieAlgebraModule({0,0},g)
	    isIsomorphic(M,N)
	    isIsomorphic(M,M)
	    isIsomorphic(M,M**Z)
	    isIsomorphic(M**N,N**M)
///
TEST ///
    g=simpleLieAlgebra("A",2);
    M=irreducibleLieAlgebraModule({2,1},g);
    N=irreducibleLieAlgebraModule({1,2},g);
    Z=irreducibleLieAlgebraModule({0,0},g);
    assert(isIsomorphic(M,N) === false)
    assert(isIsomorphic(M,M) === true)
    assert(isIsomorphic(M,M**Z) === true)
    assert(isIsomorphic(M**N,N**M) ===true)
///
doc ///
    Key
        MaxWordLength
    Headline
        Optional argument to specify the allowable length of words in the affine Weyl group when computing fusion products.
    Description
        Text
	    The Weyl group of a simple Lie algebra is finite; in contrast, the affine Weyl group of an affine Lie algebra is infinite.  To keep Macaulay2 from trying to compute infinitely long words in this group, the default length of allowed words is set to 10.   The user may override this with the optional argument "MaxWordLength".  If the word length is too small, the program will return an error.  
///
doc ///
    Key
        [fusionCoefficient, MaxWordLength]
    Headline
        Optional argument to specify the allowable length of words in the affine Weyl group when computing fusion products.
    Description
        Text
            The Weyl group of a simple Lie algebra is finite; in contrast, the affine Weyl group of an affine Lie algebra is infinite.  To keep Macaulay2 from trying to compute infinitely long words in this group, the default length of allowed words is set to 10.   The user may override this with the optional argument "MaxWordLength".  If the word length is too small, the program will return an error.
///
doc ///
    Key
        [fusionProduct, MaxWordLength]
    Headline
        Optional argument to specify the allowable length of words in the affine Weyl group when computing fusion products.
    Description
        Text
            The Weyl group of a simple Lie algebra is finite; in contrast, the affine Weyl group of an affine Lie algebra is infinite.  To keep Macaulay2 from trying to compute infinitely long words in this group, the default length of allowed words is set to max \{10, rank($\mathbf{g}$)+1\}.   The user may override this with the optional argument "MaxWordLength".  If the word length is too small, the program will return an error.
///
endPackage "LieTypes" 
 
     |