1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
|
newPackage(
"LinearTruncations",
Version => "1.0",
Date => "May 5, 2021",
Authors => {
{Name => "Lauren Cranton Heller", Email => "lch@math.berkeley.edu"},
{Name => "David Eisenbud", Email => "de@msri.org"},
{Name => "Navid Nemati", Email => "Navid.Nemati@inria.fr"}},
Headline => "find the multigraded truncations that give linear resolutions",
PackageExports => {"Truncations", "TateOnProducts"},
DebuggingMode => false
)
export{
"multigradedPolynomialRing",
"irrelevantIdeal",
"diagonalMultidegrees",
"findMins",
"findRegion",
"partialRegularities",
"isLinearComplex",
"linearTruncations",
"supportOfTor",
"linearTruncationsBound",
"regularityBound",
"isQuasiLinear",
"compMin",
"compMax",
--
"IrrelevantIdeal",
"Inner",
"Outer"
}
-------------------------
--coordinate rings for products of projective spaces
multigradedPolynomialRing = method(Options => {
CoefficientField => ZZ/32003,
Standard => true,
Variables => "x"
})
multigradedPolynomialRing List := opts -> ex -> (
kk := opts.CoefficientField;
len := #ex;
xx := if opts.Standard then (
x := opts.Variables;
if instance(x,String) then x = getSymbol x;
flatten apply(len, i -> apply(ex_i+1, j -> x_(i,j)))
) else (
vars(0..(sum ex)+#ex-1)
);
degs := flatten apply(len, i -> apply(ex_i+1, k -> apply(len,
j -> if i==j then 1 else 0
)));
kk[xx, Degrees => degs]
)
multigradedPolynomialRing ZZ := opts -> n -> (
multigradedPolynomialRing(toList(n:1), opts)
)
gradedPolynomialRing = method(Options => {
CoefficientField => ZZ/32003,
Variables => "y"
})
gradedPolynomialRing List := opts -> n -> (
kk := opts.CoefficientField;
y := opts.Variables;
if instance(y,String) then y = getSymbol y;
yy := flatten apply(#n, i -> apply(n_i+1, j -> y_(i,j)));
kk[yy]
)
irrelevantIdeal = method()
--only works for products of projective spaces
irrelevantIdeal Ring := S -> (
degs := unique degrees S;
ideals := apply(degs, ell -> (
ideal select(gens S, s -> degree s == ell)
));
intersect ideals
)
exponent = method()
--redundant with unexported function dimVector in VirtualResolutions
exponent Ring := S -> (
alldegs := degrees S;
degs := unique alldegs;
apply(degs, ell -> -1 + #positions(alldegs, em -> em == ell))
)
-------------------------
--functions for linearTruncations
diagonalMultidegrees = method()
--redundant with function compositions in core
diagonalMultidegrees(ZZ,ZZ) := (d,t) -> (
--exponent list of the d-th power of the max ideal in t vars
if d<0 then return {};
if t==1 then {{d}} else if d==0 then {toList(t:0)} else
flatten apply(d+1, i ->
apply(diagonalMultidegrees(d-i, t-1), ell -> flatten prepend(i,ell))
)
)
diagonalMultidegrees(ZZ,List) := (d,n) -> (
--a list of #n -tuples adding up to d, where the i-th element is <= 1+n_i
L1 := diagonalMultidegrees(d,#n);
select(L1, ell -> all(#n, i -> ell_i <= (1+n_i)))
)
-*
diagonalMultidegrees' = method()
--we use this trick...based on findHashTableCorner from TateOnProducts
diagonalMultidegrees'(ZZ,ZZ) := (deg,len) -> (
P := multigradedPolynomialRing toList (len:0);
Q := gradedPolynomialRing toList (len:0);
phi := map(P, Q, gens P);
degree \ flatten entries phi basis(deg, Q)
)
*-
findMins = method()
findMins Ideal := I -> (
apply(flatten entries mingens I, m -> flatten exponents m)
)
findMins List := L -> (
if L=={} then return {};
if any(L, ell -> not instance(ell, List)) then error "expected list of lists";
low := compMin L;
t := #(L_0);
if any(L, ell -> #ell != t) then error "expected entries of list to have same length";
x := local x;
T := ZZ/2[x_0..x_(t-1)];
(findMins ideal apply(L, ell -> T_(ell-low)))/(g -> g+low)
)
-*
--using version in TateOnProducts instead
coarseMultigradedRegularity' = method()
coarseMultigradedRegularity' Module := M ->
coarseMultigradedRegularity' res prune M
coarseMultigradedRegularity' ChainComplex := F -> (
t := degreeLength ring F;
if t<=2 then
partialRegularities F
else(
range := toList(min F..max F-1);
degsF := flatten(apply(range,i -> degrees (F_i)));
apply(t, i-> max apply(degsF, ell->ell_i))
)
)
*-
partialRegularities = method()
partialRegularities Module := M ->
partialRegularities res prune M
partialRegularities ChainComplex := F-> (
t := degreeLength ring F;
range := toList(min F..max F-1);
apply(t, i -> max flatten apply(range, j -> (
apply(degrees(F_j), ell -> ell_i - j)
)))
)
-*
--version that allows generation in multiple multidegrees
isLinearComplex = method()
isLinearComplex ChainComplex := F -> (
if F == 0 then return true;
t := degreeLength ring F;
range := toList(min F..max F-1);
dF := apply(range, i -> (degrees(F_i))/sum);
mindF := min(dF_(min F));
all(range, i -> max(dF_i) === mindF+i-min F)
)
*-
isLinearComplex = method()
--requires generators in single degree
isLinearComplex ChainComplex := F -> (
if F == 0 then return true;
t := degreeLength ring F;
range := toList(min F..max F-1);
if #(unique degrees F_(range_0)) != 1 then return false;
dF := apply(range, i -> (degrees(F_i))/sum);
mindF := dF_(min F)_0;
all(range, i -> max(dF_i) === mindF+i-range_0)
)
-*
--computation moved to findRegion
linearTruncations = method(Options =>{Verbose =>false})
linearTruncations Module := o -> M -> (
t := degreeLength M;
F := res prune M;
r := coarseMultigradedRegularity F;
d := regularity F;
L0 := diagonalMultidegrees(d,t);
candidates := set {};
scan(L0, ell ->candidates = candidates+set toList(ell..r));
candidates = toList candidates;
if o.Verbose == true then <<"candidates are"<< candidates<<endl;
L := select(candidates, ell ->
isLinearComplex res truncate(ell,M)
);
if o.Verbose == true then << "the candidates with linear truncations are" << L<<endl;
findMins L
)
linearTruncations(Module,List) := o -> (M, candidates) -> (
L := select(candidates, c->(
isLinearComplex res prune truncate(c, M)
));
findMins L
)
*-
findRegion = method(Options => true)
--only option symbols used by findRegion are Outer and Inner
findRegion(List,Ideal, Function) :=
findRegion(List,Module,Function) := true >> opts -> (range,M,f0) -> (
t := degreeLength ring M;
if #range != 2 or any(range, ell -> #ell != t)
then error "expected range to be a list of 2 multidegrees of M";
if not all(range_1-range_0, i -> i>=0)
then error "expected start of range to be below end";
(low, high) := toSequence range;
x := local x;
T := ZZ/2[x_0..x_(t-1)];
f := if options f0 === null then f0 else (
fopts := select(keys options f0, k -> opts#?k);
fopts = fopts / (k -> k => opts#k);
(ell, M) -> f0(ell, M, new OptionTable from fopts)
);
try f(low,M) else error "expected function to take multidegree, module, and given options";
L0 := if opts.?Inner then opts.Inner else {};
I := ideal({0_T} | apply(L0, ell -> T_(ell - low)));
--assume I0 to be in I without checking
K0 := if opts.?Outer then opts.Outer else {low};
J := ideal apply(K0, ell -> T_(ell - low));
if isSubset(J,I) then (
if I==J then return (findMins I)/(ell -> ell + low) else
error "expected Outer to contain Inner"
);
--don't check outside of region generated by K0
ht := new MutableHashTable from apply(K0,
ell -> T_(ell - low) => ell);
--this is a breath first search borrowed from the FGLM package
while #ht > 0 do (
(elt, ell) := min pairs ht;
remove(ht, elt);
if elt % I == 0 then continue;
if f(ell, M) then I = I + ideal elt else (
scan(T_*, g -> (
leaf := first exponents(g * elt) + low;
if all(high - leaf, i -> i >= 0)
and not ht#?(g * elt)
then ht#(g * elt) = leaf
))
)
);
(findMins I)/(ell -> ell + low)
)
linearTruncations = method()
linearTruncations(List,Module) := (range,M) -> (
findRegion(range,M,isLinearTruncation)
)
linearTruncations Module := M -> (
t := degreeLength M;
r := regularity M;
range := {compMin degrees prune M, toList(t:r+1)};
linearTruncations(range,M)
)
-------------------------
--boolean operators for different regions
isLinearTruncation = method()
isLinearTruncation(List,Module) := (d,M) -> (
N := truncate(d,M);
if N==0 then return true;
degree N_0 == d and isLinearComplex res prune N
)
isQuasiLinear = method(Options => {IrrelevantIdeal => null})
--see Theorem 2.9 of Berkesch-Erman-Smith
isQuasiLinear(List,Module) := opts -> (d,M) -> (
if debugLevel > 1 then print(" -- truncating at " | toString d);
irr := if opts.IrrelevantIdeal =!= null
then opts.IrrelevantIdeal else irrelevantIdeal ring M;
N := truncate(d,M);
degs := supportOfTor N;
allowed := supportOfTor comodule irr;
if (len := #degs) > #allowed then return false;
all(reverse (0 .. len-1),
i -> all(degs_i,
ell -> any(allowed_i,
em -> all(em + d - ell, j -> j >= 0))))
)
isQuasiLinear BettiTally := opts -> T -> (
if (irr := opts.IrrelevantIdeal) === null then error "expected IrrelevantIdeal option";
allowed := supportOfTor comodule irr;
if (len := pdim T) > #allowed-1 then return false;
--supportOfTor will have length 1 more than the pd of irr
degs := keys T;
d := if degs_0_0 == 0 then degs_0_1 else (
degs = sort keys T;
degs_0_1
);
all(reverse degs, ell -> (
hdeg := ell_0;
if hdeg < 0 then return false;
any(allowed_hdeg, em -> all(em + d - ell_1, j -> j >=0))
))
)
isQuasiLinear ChainComplex := opts -> F -> isQuasiLinear(betti F, opts)
-------------------------
--bounds on linear truncations region
supportOfTor = method()
supportOfTor ChainComplex := F -> (
for i from min F to max F list (
degs := unique degrees F_i;
if degs == {} then continue else degs
)
)
supportOfTor Module := M -> supportOfTor res prune M
compMin = method()
compMin List := L -> (
if L == {} then return {};
n := #(L_0);
if any(L, ell -> #ell != n) then error "expected entries to have same length";
apply(n, i -> min apply(L, ell -> ell_i))
)
compMin(List,List) := (L,M) -> compMin {L,M}
compMax = method()
compMax List := L -> (
if L == {} then return {};
n := #(L_0);
if any(L, ell -> #ell != n) then error "expected entries to have same length";
apply(n, i -> max apply(L, ell -> ell_i))
)
compMax(List,List) := (L,M) -> compMax {L,M}
protect Nonlinear
MM = method(Options => {Nonlinear => false})
MM(ZZ, List, List) := opts -> (i, range, D) -> (
n := #D;
if opts.Nonlinear and i != 0
then MM(i-1, range, D-toList(n:1)) else (
low := range_0;
high := range_1;
L := toList(drop(low,1)..drop(high,1));
flatten apply(L, A -> (
dif := drop(D,1)-A;
pos := sum select(dif, j -> j>0);
if pos<=i then (
limit := D_0-i-1+pos;
if low_0<=limit then (
for j from low_0 to limit list prepend(j,A)
) else {}
) else for j from low_0 to high_0 list prepend(j,A)
))
)
)
bound = method(Options => {Nonlinear => false})
bound Module := opts -> M -> (
t := degreeLength ring M;
if M == 0 then return (t:-infinity);
st := supportOfTor M;
high := compMax flatten st;
low := compMin degrees prune M;
lower := low-toList(t:#supportOfTor M);
st = flatten apply(#st, i -> apply(st_i, ell -> {i,ell}));
gt := new MutableHashTable from flatten apply(st, ell -> (
xs := MM(ell_0,{lower,high},ell_1,Nonlinear => opts.Nonlinear);
apply(xs, em -> em => false)
));
L := toList(low..high);
findMins select(L, ell -> not gt#?ell)
)
linearTruncationsBound = method()
linearTruncationsBound Module := M -> bound M
regularityBound = method()
regularityBound Module := M -> bound(M, Nonlinear => true)
-------------------------
--functions neither used nor exported
graphTor = method()
--supportOfTor plus which maps are nonzero
graphTor Module := M -> (
F := res prune M;
degs := apply(1+length F, i -> degrees F_i);
maps := apply(length F, i -> (
apply(entries F.dd_(i+1), ell -> (
apply(ell, j -> if j==0 then 0 else 1)
))
));
)
testOfLinearity = method()
--whether degrees will become linear after truncating at b
--so all outputs will be "true" iff b is in linearTruncationsBound
testOfLinearity(List, Module) := (b, M) -> (
deglists := supportOfTor M;
absb := sum b;
apply(#deglists, i -> apply(deglists_i, a ->
sum compMax{a,b} <= absb+i
))
)
nonLinearSupportOfTor = method()
nonLinearSupportOfTor(ZZ,List) := (d,L) -> (
apply(#L, i -> select(L_i, ll -> sum ll > d+i))
)
nonLinearSupportOfTor List := L -> (
d := sum compMin L_0;
nonLinearSupportOfTor(d,L)
)
nonLinearSupportOfTor Module := M -> (
nonLinearSupportOfTor supportOfTor M
)
predictedNonLinearSupportOfTor = method()
--expected non-linear syzygies after truncating at L
--often but not always equal to nonLinearSupportOfTor truncate(L,M)
predictedNonLinearSupportOfTor(List, Module) := (L,M) -> (
absL := sum L;
is := nonLinearSupportOfTor M;
is = apply(is, ell -> apply(ell, L' -> compMax{L,L'}));
nonLinearSupportOfTor(absL,is)
)
-------------------------
TEST ///
S = multigradedPolynomialRing({1,2,3}, Variables => "y")
assert(unique degrees S == {{1,0,0},{0,1,0},{0,0,1}})
assert(#gens S == 2+3+4)
assert instance(x,Symbol)
assert instance(y,IndexedVariableTable)
///
TEST ///
S = multigradedPolynomialRing({1,2}, Standard => false)
assert(irrelevantIdeal S == ideal(a*c,a*d,a*e,b*c,b*d,b*e))
///
TEST ///
L = diagonalMultidegrees(5,3);
assert all(L, ell -> sum ell == 5)
assert all(L, ell -> #ell == 3)
assert(#L == binomial(5+3-1, 3-1))
assert(diagonalMultidegrees(-1,2) == {})
///
TEST ///
L = {{1,-5,-1},{-3,5,-3},{-3,2,-5},{-5,-2,5},{-1,-5,-2},{5,2,4},{-4,-3,2}}
L' = findMins L
assert all(L', ell -> any(L, em -> all(ell-em, i -> i >= 0)))
assert all(L, ell -> all(L', em -> ell != em) or not any(L', em -> all(ell-em, i -> i > 0)))
///
TEST ///
S = multigradedPolynomialRing {1,1,1}
--R = apply(3, i -> (baseRing S)[gens S, Degrees => apply(degrees S, ell -> ell_i)]) | {S}
M = comodule ideal(x_(0,0)*x_(0,1)*x_(1,0)*x_(2,0)^2,x_(0,1)^2*x_(1,0)^2*x_(1,1)^2*x_(2,0)^2,
x_(0,0)^3*x_(1,0)*x_(2,1),x_(0,0)^2*x_(0,1)^2*x_(2,0)*x_(2,1),
x_(0,0)*x_(0,1)^2*x_(1,1)^2*x_(2,0)^3,x_(0,1)^3*x_(1,0)^2*x_(1,1)*x_(2,1)^2
)
assert(partialRegularities M == {4,3,2})
assert(regularityBound M == {{4,3,2}})
///
TEST ///
S = multigradedPolynomialRing 2
M = {
{{{-1,0},{0,-1}},{{-1,-1}},{}},
{{{-3,-3},{-3,-3}},{{-4,-3},{-3,-4}},{{-4,-4}},{}},
{{{0,0}},{{0,0}},{}},
{{{1,1}},{{0,1}},{{0,0}},{}},
{{{0,0}},{{-1,-1}},{{-2,-1},{-1,-2}},{}},
{{{0,0}},{{-1,0},{0,-1}},{{-2,0},{-1,-1},{0,-2}},{}},
{{{0,0}},{{-1,0},{0,-1}},{{-2,0},{-1,-1},{0,-2}},{{0,-4}},{}}
};
--twists appearing in chain complexes
C = apply(M, L -> chainComplex(apply(#L - 1, i -> map(S^(L_i),S^(L_(i+1)),0))));
A = {
false,
true,
false,
true,
false,
true,
false
}
--expected answers for isLinearComplex
scan(7, i -> assert(isLinearComplex C_i === A_i))
scan(7, i -> assert(set supportOfTor C_i === set(-drop(M_i/unique,-1))))
///
TEST ///
S = ZZ/101[x,y,Degrees=>{{1,0},{0,1}}]
I = ideal(x*y^2,x^3*y)
M = S^1/I
f = (d,M) -> truncate(d,M)==0
assert(set findRegion({{0,0},{4,4}},M,f) === set {{1,2},{3,1}})
///
TEST ///
L = {{0,1,1},{0,2,2},{1,2,1}}
L' = apply(3, i -> apply(L, ell -> ell_i))/max
S = multigradedPolynomialRing 3
M = S^(-L)
assert(linearTruncations M == {L'})
assert(regularityBound M == {L'})
assert(partialRegularities M == L')
///
TEST ///
S = multigradedPolynomialRing 2
M = coker map(S^{{-1,0},{0,-1},{0,-1}},S^{{-1,-1},{-1,-1}},
{{x_(1,0),x_(1,1)},{-x_(0,0),0},{0,-x_(0,1)}})
assert(regularityBound M == {{1,1}})
assert(partialRegularities M == {1,1})
assert(set linearTruncations M === set {{0,2},{1,1}})
///
TEST ///
L = {{3,4,1},{5,8,1},{10,2,7}}
assert all(L, ell -> all(ell - compMin L, i -> i >= 0))
assert all(L, ell -> all(compMax L - ell, i -> i >= 0))
///
-------------------------
beginDocumentation()
doc ///
Key
LinearTruncations
Headline
truncations of a multigraded module that give linear resolutions
Description
Text
Let $k$ be a field, $S$ a $\ZZ^r$-graded polynomial ring over $k$, and $M$ a finitely generated, $\ZZ^r$-graded $S$-module.
Write $M_{\geq d}$ for the truncation $\oplus_{d'\geq d} M_d'$ of $M$ at $d$ (where $d'\geq d$ if $d'_i\geq d_i$ for all $i$).
The main purpose of this package is to find the degrees $d\in\ZZ^r$ so that $M_{\geq d}$ has a linear resolution,
i.e. satisfies the function @TO isLinearComplex@. No sufficient finite search space is known, so the result may not be complete.
Example
S = ZZ/101[x_1..x_4,Degrees=>{{1,0},{1,0},{0,1},{0,1}}]
I = ideal(x_1^3*x_3, x_2*x_3*x_4, x_3^4*x_4, x_4*x_2^2, x_1^3*x_2^3, x_3^3)
M = S^1/I
regularity M
r = coarseMultigradedRegularity M
L = linearTruncations({{0,0}, r}, M)
--bounds={{5,2}}
--linearTruncations={{2,3},{3,2}}
apply(L, i -> isLinearComplex res truncate(i,M))
Text
If $M_{\geq d}$ has a linear truncation then $M_{\geq d'}$ has a linear truncation for all $d'\geq d$, so the function
@TO linearTruncations@ gives the minimal such multidegrees in a given range, using the function @TO findRegion@. The functions
@TO linearTruncationsBound@ and @TO regularityBound@ estimate the linear truncation region and the multigraded regularity region
of $M$, respectively, without calculating cohomology or truncations.
Caveat
If the ring $S$ is standard $\ZZ$-graded then $M_{\geq d}$ has a linear resolution if and only if $d\geq\operatorname{reg} M$,
where $\operatorname{reg} M$ is the Castelnuovo-Mumford regularity of $M$.
SeeAlso
Truncations
Subnodes
multigradedPolynomialRing
irrelevantIdeal
diagonalMultidegrees
findMins
findRegion
partialRegularities
isLinearComplex
linearTruncations
supportOfTor
linearTruncationsBound
regularityBound
isQuasiLinear
compMin
///
doc ///
Key
diagonalMultidegrees
(diagonalMultidegrees,ZZ,ZZ)
(diagonalMultidegrees,ZZ,List)
Headline
t-tuples of non-negative integers with sum equal to d
Usage
diagonalMultidegrees(d,t)
diagonalMultidegrees(d,L)
Inputs
d: ZZ
the (non-negative) sum of the tuples
t: ZZ
the length of the tuples
L: List
the maximum value for each coordinate
Outputs
: List
containing lists of @TT "t"@ integers each
Description
Text
Given numbers @TT "d"@ and @TT "t"@, this function gives all lists of @TT "t"@ non-negative integers where the sum of each list is equal to @TT "d"@.
If the second input is a list @TT "L"@, the tuples have the same length as @TT "L"@ and are constrained to have @TT "i"@-th entry at most @TT "1+L_i"@.
Example
t = 2
d = 5
diagonalMultidegrees(d,t)
diagonalMultidegrees(d, {0,1,2})
SeeAlso
(basis,ZZ,Module)
///
--TODO: check that modules are over polynomial rings? products of projective spaces?
doc ///
Key
partialRegularities
(partialRegularities,Module)
(partialRegularities,ChainComplex)
Headline
calculates Castelnuovo-Mumford regularity in each component of a multigrading
Usage
partialRegularities M
Inputs
M: Module
a multigraded module
F: ChainComplex
the minimal free resolution of a module
Outputs
: List
with @TT "i"@-th coordinate the regularity in the @TT "i"@-th component of the grading
Description
Text
This function applies the definition of Castelnuovo-Mumford regularity to the complex obtained by
resolving the module $M$ and forgetting all but the @TT "i"@-th coordinate of the twists appearing.
Alternately, the minimal resolution of $M$ can be given directly.
Example
S = ZZ/101[x_0,x_1,y_0,y_1,z_0,z_1,Degrees=>{{1,0,0},{1,0,0},{0,1,0},{0,1,0},{0,0,1},{0,0,1}}]
I = ideal(x_0*x_1*y_0*z_0^2, x_1^2*y_0^2*y_1^2*z_0^2, x_0^3*y_0*z_1, x_0^2*x_1*y_1*z_0*z_1, x_0*x_1^2*y_1^2*z_0^3, x_1^3*y_0^2*y_1*z_1^2)
M = S^1/I
netList supportOfTor M
partialRegularities M
Text
In the bigraded case this element will always be contained in the multigraded regularity if its total degree is at least $\operatorname{reg} M$.
Caveat
Changing the grading of $M$ and applying the command @TO regularity@ will not yield the correct result because betti
tables in @ITALIC "Macaulay2"@ do not (at least at the time of this writing) accommodate rings with generators of degree 0.
SeeAlso
regularity
///
doc ///
Key
isLinearComplex
(isLinearComplex,ChainComplex)
Headline
tests whether a complex of graded modules is linear
Usage
isLinearComplex F
Inputs
F: ChainComplex
Outputs
: Boolean
true if @TT "F"@ is a linear complex, false if it is not
Description
Text
We say that a (nonzero) $\ZZ^r$-graded complex @TT "F"@ is linear if its first nonzero module is generated in a single multidegree
and all of its maps (including the zero maps) have degree at most 1. For instance, if @TT "F_i"@ is zero for $i<0$ and @TT "F_0"@ is generated in degree
$0\in\ZZ^r$, then @TT "F_i"@ should be generated in multidegrees with sum at most $i$ for $i>0$. If @TT "F"@ is zero then the function returns true.
Example
S = ZZ/101[x_1..x_4]
I = ideal(x_1*x_2, x_1*x_3,x_1*x_4, x_2*x_3, x_3*x_4)
M = S^1/I
F = res M
betti F
isLinearComplex F
F' = res truncate(2,M)
betti F'
isLinearComplex F'
Caveat
It is possible for a complex to have differential matrices containing only linear entries yet be nonlinear by the definition above.
SeeAlso
isQuasiLinear
///
doc ///
Key
linearTruncations
(linearTruncations,List,Module)
(linearTruncations,Module)
Headline
finds minimal multidegree(s) in a given range where the resolution of a truncated module is linear
Usage
linearTruncations(L,M)
linearTruncations M
Inputs
L: List
containing 2 lists: minimum and maximum multidegrees defining range
M: Module
the module to be truncated
Outputs
: List
containing multidegrees with linear truncations
Description
Text
Given a list @TT "{L1,L2}"@ and a module $M$, this function truncates $M$ at each multidegree between @TT "L1"@ and @TT "L2"@ and tests whether the minimal resolution
of the resulting module is linear. The set of multidegrees producing linear resolutions is invariant under positive translation, and the
function returns the minimal multidegrees in this set. If a list @TT "L"@ is not provided it will search between the componentwise minimum of the
degrees of the generators of $M$ and the degree with all coordinates equal to $r+1$, where $r$ is the @TO regularity@ of $M$.
CannedExample
i1 : S = multigradedPolynomialRing({2,3},Standard=>false)
o1 = S
o1 : PolynomialRing
i2 : M = coker map(S^{{0,-3},{0,-3},{-3,0},{-3,0},{-3,0},{-3,0}},S^{{-3,-3},{-3,-3},{-3,-3},{-3,-3},{-3,-3},{-3,-3}},
{{a^3,b^3,c^3, 0,0,0},{0,0,0,b^3,a^3,c^3},{-d^3,0,0,-d^3,0,0},{0,-e^3,0,0,-e^3,0},{0,0,-f^3,0,0,-f^3},{0,0,0,-g^3,0,0}})
o2 = cokernel {0, 3} | a3 b3 c3 0 0 0 |
{0, 3} | 0 0 0 b3 a3 c3 |
{3, 0} | -d3 0 0 -d3 0 0 |
{3, 0} | 0 -e3 0 0 -e3 0 |
{3, 0} | 0 0 -f3 0 0 -f3 |
{3, 0} | 0 0 0 -g3 0 0 |
6
o2 : S-module, quotient of S
i3 : linearTruncations M
o3 = {{3, 3}}
o3 : List
i4 : linearTruncations({{0,0},{9,9}}, M)
o4 = {{3, 3}, {8, 2}}
o4 : List
Caveat
With the default options there may be generators of the linear truncation region not contained
in the search region and thus not returned.
SeeAlso
coarseMultigradedRegularity
isLinearComplex
///
doc ///
Key
multigradedPolynomialRing
(multigradedPolynomialRing,List)
(multigradedPolynomialRing,ZZ)
[multigradedPolynomialRing,CoefficientField]
[multigradedPolynomialRing,Variables]
[multigradedPolynomialRing,Standard]
Headline
produces polynomial rings with standard multigradings
Usage
multigradedPolynomialRing L
multigradedPolynomialRing n
Inputs
L: List
entries 1 less than the desired number of variables for each multidegree
n: ZZ
the rank of the grading, in the case with 2 variables for each multidegree
CoefficientField=>Ring
the coefficient field
Variables=>String
name to use for indexed variables
Standard=>Boolean
Outputs
: PolynomialRing
a multigraded polynomial ring
Description
Text
Given a list @TT "L"@, this function gives a $\ZZ^r$-graded polynomial ring (where $r$ is the length of @TT "L"@) containing @TT"L_i+1"@ variables
of multidegree equal to the @TT "i"@-th basis vector of $\ZZ^r$, i.e. the coordinate ring of the product of projective spaces with
dimensions the entries of @TT "L"@. Given an integer @TT "n"@ it returns the coordinate ring of a product of @TT "n"@ copies of $\PP^1$.
Example
S = multigradedPolynomialRing({1,3,4})
gens S
degrees S
gens multigradedPolynomialRing 4
Text
By default the output will be a ring over @TT "ZZ/32003"@ in variables of the form @TT "x_(i,j)"@. The coefficients can be changed using the option
@TT "CoefficientField"@ and the variable name with @TT "Variables"@ (which takes a string). Setting the option @TT "Standard"@ to false will produce
variables with no indices, starting at @TT "a"@.
Example
multigradedPolynomialRing({1,2},CoefficientField => ZZ/5,Variables=>"y")
multigradedPolynomialRing(3,Standard=>false)
Caveat
The output of @TT "multigradedPolynomialRing"@ is not compatible with some functions from the package @TO "TateOnProducts"@, such as @TO "TateOnProducts :: cohomologyHashTable"@.
Use @TO "TateOnProducts :: productOfProjectiveSpaces"@ instead.
SeeAlso
productOfProjectiveSpaces
irrelevantIdeal
///
doc ///
Key
irrelevantIdeal
(irrelevantIdeal,Ring)
Headline
gives the irrelevant ideal of the coordinate ring of a product of projective spaces
Usage
irrelevantIdeal R
Inputs
R: Ring
coordinate ring of a product of projective spaces
Outputs
: Ideal
irrelevant ideal in @TT "R"@
Description
Text
Given the coordinate ring of a product of projective spaces, this function produces the irrelevant ideal (in the sense of toric geometry)
by listing the unique degrees of generators of @TT "R"@, creating an ideal from the generators of each degree, and intersecting them.
Example
R = multigradedPolynomialRing {1,2}
irrelevantIdeal R
R = multigradedPolynomialRing 3
irrelevantIdeal R
Caveat
This function will not give the correct irrelevant ideal for the Cox ring of a toric variety that is not a product of projective spaces.
Use the package @TO "NormalToricVarieties"@ instead.
SeeAlso
multigradedPolynomialRing
--"NormalToricVarieties :: ideal(NormalToricVariety)"
--TODO: uncomment these when documentation error messages fixed
///
doc ///
Key
findMins
(findMins,List)
(findMins,Ideal)
Headline
calculates the minimal elements of a subset of ZZ^r
Usage
findMins L
Inputs
L: List
subset of $\ZZ^r$
Outputs
: List
minimal elements
Description
Text
Given a list @TT "L"@ of elements in $\ZZ^r$, this function will return the minimal elements of @TT "L"@ under the partial order where
$c\leq d$ if and only if $c_i\leq d_i$ for all $1\leq i\leq r$.
Example
L = {{1,2},{3,1},{3,2},{1,4}}
findMins L
Text
The algorithm constructs a monomial ideal by using the elements of the list as exponents. Such an ideal can also be given directly.
SeeAlso
findRegion
///
doc ///
Key
findRegion
Inner
Outer
(findRegion,List,Ideal, Function)
(findRegion,List,Module,Function)
Headline
finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
Usage
findRegion({L1,L2},M,f)
Inputs
L1: List
the minimum multidegree to check
L2: List
the maximum multidegree to check
M:{Module,Ideal}
f: Function
a function that takes a List and an Ideal or Module and returns a Boolean value
Outputs
: List
minimal multidegrees
Description
Text
$M$ should be an ideal or a module over a $\ZZ^r$-graded ring and
@TT "f"@ a function so that @TT "f(d,M)"@ is a Boolean value for @TT "d"@ in $\ZZ^r$
and @TT "f(d,M)"@ implies @TT "f(d+e,M)"@ for @TT "e"@ in $\NN^r$.
Given a list @TT "{L1, L2}"@, this function will return the minimal multidegrees @TT "d"@
between @TT "L1"@ and @TT "L2"@ satisfying @TT "f(d,M)"@.
Example
S = ZZ/101[x,y,Degrees=>{{1,0},{0,1}}]
I = ideal(x*y^2,x^3*y)
M = S^1/I
f = (d,M) -> truncate(d,M)==0
findRegion({{0,0},{4,4}},M,f)
Text
If some degrees @TT "d"@ are known to satisfy @TT "f(d,M)"@, then they can be specified
using the option @TT "Inner"@ in order to expedite the computation. Similarly, degrees
not above those given in @TT "Outer"@ will be assumed not to satisfy @TT "f(d,M)"@.
If @TT "f"@ takes options these can also be given to @TT "findRegion"@.
Example
elapsedTime findRegion({{0,0},{4,4}},M,f)
elapsedTime findRegion({{0,0},{4,4}},M,f,Inner=>{{1,2},{3,1}},Outer=>{{1,1}})
Caveat
Use the option @TT "Outer"@ with care if @TT "f"@ is not invariant under positive translation.
Contributors
Mahrud Sayrafi contributed to the code for this function.
SeeAlso
findMins
"VirtualResolutions :: multigradedRegularity"
///
doc ///
Key
linearTruncationsBound
(linearTruncationsBound,Module)
Headline
bounds the region where truncations of a module have linear resolutions
Usage
linearTruncationsBound M
Inputs
M: Module
a multigraded module
Outputs
: List
containing multidegrees where the truncation of M will have a linear resolution
Description
Text
Using only the multigraded betti numbers of a $\ZZ^r$-graded module $M$,
this function identifies multidegrees at which the truncation of $M$ will have
a linear minimal resolution (i.e. where the resolution will satisfy
@TT "isLinearComplex"@).
Example
S = ZZ/101[x_0,x_1,y_0,y_1,z_0,z_1,Degrees=>{{1,0,0},{1,0,0},{0,1,0},{0,1,0},{0,0,1},{0,0,1}}]
I = ideal(x_0*x_1*y_0*z_0^2, x_1^2*y_0^2*y_1^2*z_0^2, x_0^3*y_0*z_1, x_0^2*x_1*y_1*z_0*z_1, x_0*x_1^2*y_1^2*z_0^3, x_1^3*y_0^2*y_1*z_1^2)
M = S^1/I
L = linearTruncationsBound M
apply(L, d -> isLinearComplex res prune truncate(d,M))
Text
The output is a list of the minimal multidegrees $d$ such that the sum of the positive
coordinates of $b-d$ is at most $i$ for all degrees $b$ appearing in the @TT "i"@-th step of
the resolution of $M$.
Example
elapsedTime linearTruncations({{2,2,2},{4,4,4}}, M)
elapsedTime linearTruncationsBound M
Caveat
In general @TT "linearTruncationsBound"@ will not find the minimal degrees where $M$
has a linear resolution but will be faster than repeatedly truncating $M$.
SeeAlso
isLinearComplex
linearTruncations
///
doc ///
Key
regularityBound
(regularityBound,Module)
Headline
bounds the multigraded regularity of a module
Usage
regularityBound M
Inputs
M: Module
a multigraded module with no $H^0_B$ or $H^1_B$
Outputs
: List
containing multidegrees in the regularity of @TT "M"@
Description
Text
Using only the multigraded betti numbers of a $\ZZ^r$-graded module $M$, this function identifies a subset of the
multigraded regularity of a module $M$ over the coordinate ring $S$ of a product of projective spaces, in the sense of Maclagan
and Smith. It assumes that the local cohomology groups $H^0_B(M)$ and $H^1_B(M)$ vanish, where $B$ is the irrelevant ideal of $S$.
Example
(S,E) = productOfProjectiveSpaces {1,2}
I = ideal(x_(0,0)*x_(1,0),x_(1,1)^3)
M = S^1/I
regularityBound M
needsPackage "VirtualResolutions"
multigradedRegularity(S,M)
Text
The output is often but not always @TT "{partialRegularities M}"@.
Caveat
In general @TT "regularityBound"@ will not give the minimal elements of $\operatorname{reg} M$ but will be faster than computing cohomology.
SeeAlso
partialRegularities
isQuasiLinear
"VirtualResolutions :: multigradedRegularity"
///
doc ///
Key
isQuasiLinear
IrrelevantIdeal
(isQuasiLinear,List,Module)
(isQuasiLinear,BettiTally)
(isQuasiLinear,ChainComplex)
[isQuasiLinear,IrrelevantIdeal]
Headline
checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
Usage
isQuasiLinear(d,M)
Inputs
d: List
a multidegree at which to truncate the module
M: Module
a module over a multigraded ring $S$
IrrelevantIdeal=>Ideal
the irrelevant ideal of $S$
Outputs
: Boolean
Description
Text
This function truncates the module $M$ at degree $d$ and compares the twists appearing in its resolution with those appearing in the
resolution of $S/B$, where $S$ is the ring of $M$ and $B$ the irrelevant ideal. If for some $i$ the @TT "i"@-th step of the resolution contains a summand
$S(-c-d)$ such that no summand of the @TT "i"@-th step of the resolution of $S/B$ has generator of degree greater than $c$ then the output will be
false.
If the option @TT "IrrelevantIdeal"@ is not specified it will be calculated assuming that $S$ is the coordinate ring of a product of
projective spaces.
Example
S = ZZ/101[x_0,x_1,y_0,y_1,z_0,z_1,Degrees=>{{1,0,0},{1,0,0},{0,1,0},{0,1,0},{0,0,1},{0,0,1}}]
I = ideal(x_0*x_1*y_0*z_0^2, x_1^2*y_0^2*y_1^2*z_0^2, x_0^3*y_0*z_1, x_0^2*x_1*y_1*z_0*z_1, x_0*x_1^2*y_1^2*z_0^3, x_1^3*y_0^2*y_1*z_1^2)
M = S^1/I
d = {4,3,2}
isLinearComplex res prune truncate({4,3,2},M)
isQuasiLinear(d,M)
Text
The condition comes from Theorem 2.9 in Berkesch, Erman, and Smith's paper "Virtual Resolutions for a Product of Projective Spaces."
The @TT "ChainComplex"@ and @TT "BettiTally"@ usages take the resolution of the truncation (or some other virtual resolution) directly.
Caveat
If the resolution of the truncation is longer than the resolution of $S/B$ then @TT "isQuasiLinear"@ will return false.
SeeAlso
irrelevantIdeal
truncate
///
doc ///
Key
supportOfTor
(supportOfTor,Module)
(supportOfTor,ChainComplex)
Headline
computes multidegrees in the support of Tor_i(M,k), where k is the residue field
Usage
supportOfTor M
Inputs
M: Module
a multigraded module
F: ChainComplex
the minimal resolution of a module
Outputs
L: List
where @TT "L_i"@ contains multidegrees for $\operatorname{Tor}_i(M,k)$
Description
Text
This function computes a minimal free resolution of the (pruned) module $M$, reduces it by the maximal ideal, and returns a list of the
unique degrees that occur at each step.
Example
S = multigradedPolynomialRing {1,2}
B = irrelevantIdeal S
M = S^1/B
F = res prune M
multigraded betti F
supportOfTor M
netList supportOfTor M
Text
Alternately, the minimal free resolution can be given directly.
Example
netList supportOfTor F
SeeAlso
(multigraded,BettiTally)
///
doc ///
Key
compMin
(compMin,List)
(compMin,List,List)
compMax
(compMax,List)
(compMax,List,List)
Headline
takes componentwise minimum or maximum of a list of lists
Usage
compMin L
compMin(L1,L2)
compMax L
compMax(L1,L2)
Inputs
L: List
containing lists of the same length
Outputs
: List
with the same length as those in @TT "L"@
Description
Text
The functions @TT "compMin"@ and @TT "compMax"@ take the minimum and maximum, respectively,
of a list of lists of integers (or elements of another partially ordered set)
by considering each component separately.
Example
L = {{3,4,1},{5,8,1},{10,2,7}}
compMin L
compMax L
Text
The usage @TT "compMin(L1,L2)"@ gives the same output as @TT "compMin {L1,L2}"@.
Caveat
If L is empty it will be returned unchanged.
///
end--
|