1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
-- -*- coding: utf-8 -*-
-- Copyright 1993-1999 by Daniel R. Grayson
document {
Key => {(symbol /, Module, Module),
(symbol /, Module, Ideal),
(symbol /, Module, List),
(symbol /, Module, Sequence),
(symbol /, Module, Vector),
(symbol /, Module, RingElement)},
Headline => "quotient module",
Usage => "M/N",
Inputs => {
"M",
"N" => Nothing => {
ofClass Module, ", ",
ofClass Ideal, ", ",
ofClass List, ", ",
ofClass Sequence, ", ",
ofClass RingElement, ", or ",
ofClass Vector}
},
Outputs => {
Module => "The quotient module M/N of M"
},
"If N is an ideal, ring element, or list or sequence of
ring elements (in the ring of M),
then the quotient is
by the submodule N*M of M.",
PARA{},
"If N is a submodule of M, or a list or sequence of submodules, or a vector, then the quotient
is by these elements or submodules.",
EXAMPLE lines ///
R = ZZ/173[a..d]
M = ker matrix{{a^3-a*c*d,a*b*c-b^3,a*b*d-b*c^2}}
M/a == M/(a*M)
M/M_0
M/(R*M_0 + b*M)
M/(M_0,a*M_1+M_2)
presentation oo
///,
SeeAlso => {"subquotient modules", presentation}
}
document {
Key => (symbol /, Ideal, Ideal),
Headline => "quotient module",
Usage => "I/J",
Inputs => { "I", "J" => {"in the same ring as ", TT "I"}},
Outputs => {
Module => {"The quotient module ", TT "(I+J)/J"}
},
EXAMPLE lines ///
R = QQ[a,b,c]
I = ideal vars R
M = I / I^2
///,
"There is a difference between typing I/J and (I+J)/J
in Macaulay2, although conceptually they are the same module.
The former has as its generating set the generators of I,
while the latter has as its (redundant) generators
the generators of I and J. Generally, the former method is preferable.",
EXAMPLE lines ///
gens M
N = (I + I^2)/I^2
gens N
///,
SeeAlso => {"subquotient modules", generators}
}
document {
Key => {(symbol ^,Module,Array),
(symbol ^,ChainComplex,Array)},
Headline => "projection onto summand",
Usage => "M^[i,j,...,k]",
Inputs => {"M" => {"or ", ofClass ChainComplex},
Nothing => {TT "[i,j,...,k]", ", an array of indices"}},
Outputs => {
Nothing => {ofClass Matrix, ", or ", ofClass ChainComplexMap}
},
PARA{},
"The module ", TT "M", " should be a direct sum, and the result is the map
obtained by projection onto the sum of the components numbered or named
", TT "i, j, ..., k", ". Free modules are regarded as direct sums of modules.",
PARA{},
EXAMPLE lines ///
M = ZZ^2 ++ ZZ^3
M^[0]
M^[1]
M^[1,0]
///,
PARA{},
"If the components have been given names (see ", TO directSum, "), use those instead.",
EXAMPLE lines ///
R = QQ[a..d];
M = (a => image vars R) ++ (b => coker vars R)
M^[a]
isWellDefined oo
M^[b]
isWellDefined oo
isWellDefined(M^{2})
///,
PARA{},
"This works the same way for chain complexes.",
EXAMPLE lines ///
C = res coker vars R
D = (a=>C) ++ (b=>C)
D^[a]
///,
SeeAlso => {directSum, (symbol ^,Matrix,Array), (symbol _,Module,Array),(symbol ^,Module,List)}
}
document {
Key => {
(symbol ^, Matrix, Array),
(symbol ^, ChainComplexMap, Array),
(symbol ^, GradedModuleMap, Array)
},
Headline => "component of map corresponding to summand of target",
Usage => "F^[i,j,...,k]",
Inputs => {"F" => {"or ", ofClass{ChainComplexMap,GradedModuleMap}},
Nothing => {TT "[i,j,...,k]", ", an array of indices"}},
Outputs => {
Nothing => ofClass{Matrix, ChainComplexMap, GradedModuleMap}
},
"The target of the module or chain complex ", TT "F", " should be a
direct sum, and the result is the component of this map
corresponding to the sum of the components numbered or named
", TT "i, j, ..., k", ". Free modules are regarded as direct sums of modules.
In otherwords, this routine returns the map given by certain blocks of columns.",
EXAMPLE lines ///
R = ZZ[a..d];
F = (vars R) ++ ((vars R) ++ matrix{{a-1,b-3},{c,d}})
F^[1]
F_[1]^[1]
///,
PARA{"If the components have been given names (see ", TO directSum, "), use those instead."},
EXAMPLE lines ///
G = (a=>R^2) ++ (b=>R^1)
N = map(G,R^2, (i,j) -> (i+37*j)_R)
N^[a]
N^[b]
N = directSum(x1 => matrix{{a,b-1}}, x2 => matrix{{a-3,b-17,c-35}}, x3 => vars R)
N^[x1,x3]
///,
PARA {"This works the same way for maps between chain complexes."},
SeeAlso => {(symbol^,Matrix,Array),(symbol_,Module,Array),directSum}
}
document {
Key => (symbol ^, Module, List),
Headline => "projection onto summand",
TT "M^{i,j,k,...}", " -- provides the projection map from a free module
", TT "M", " to the free module corresponding to the basis vectors whose
index numbers are listed.",
PARA{},
EXAMPLE "(ZZ^5)^{2,3}",
SeeAlso => {"_", Module, List}
}
-----------------------------------------------------------------------------
document {
Key => {getChangeMatrix,(getChangeMatrix, GroebnerBasis)},
Headline => "get the change of basis matrix",
TT "getChangeMatrix G", " -- for a Gröbner basis G, return the change of
basis matrix from the Gröbner basis to another generating set,
usually a minimal, or original, generating set.",
PARA{},
"The option ", TO "ChangeMatrix", " can be used with ", TO "gb", "
to enable the computation of the change of basis matrix."
}
document {
Key => {(modulo, Matrix, Matrix),modulo,(modulo, Matrix, Nothing),(modulo, Nothing, Matrix)},
Headline => "find the pre-image (pullback) of image of a map (low level version)",
Usage => "modulo(f,g)",
Inputs => { "f", "g" },
Outputs => {
Matrix => { " whose image is the pre-image (pullback) of the image of ", TT "g", " under ", TT "f" }
},
PARA {
"The maps ", TT "f", " and ", TT "g", " must have the same target, and their sources and targets must be free.
If ", TT "f", " is ", TO "null", ", then it is taken to be the identity. If ", TT "g", " is ", TO "null", ", it is taken to be zero."
},
PARA {"This function is mainly for internal use."},
EXAMPLE lines ///
R = QQ[x,y,z]
f = matrix {{x,y}}
g = matrix {{y,z}}
modulo(f,g)
kernel( inducedMap(coker g, target g) * f )
///
}
document {
Key => {(symbol //, Matrix, Matrix),(symbol \\, Matrix, Matrix),
(symbol //, RingElement, MonomialIdeal),
(symbol //, RingElement, GroebnerBasis),
(symbol //, RingElement, RingElement),
(symbol //, Matrix, MonomialIdeal),
(symbol //, Matrix, GroebnerBasis),
(symbol //, Matrix, RingElement),(symbol \\, Matrix, RingElement),
(symbol //, RingElement, Matrix),(symbol \\, RingElement, Matrix)
},
Headline => "factor a map through another",
Usage => "f//g\ng\\\\f",
Inputs => {
"f" => {"between modules F --> H, or ",
ofClass RingElement},
"g" => {"between modules G --> H, ",
ofClass RingElement, ", ",
ofClass MonomialIdeal, ", or ",
ofClass GroebnerBasis}
},
Outputs => {
Matrix => "a matrix h : F --> G"
},
"If ", TT "f", " is a matrix, and ", TT "g", " is a matrix or Gröbner basis, then ", TT "quotient(f,g)", " is an alternate
notation for ", TT "f//g", ".",
PARA{},
"If either ", TT "f", " or ", TT "g", " is a ring element, then it is taken to be a scalar matrix acting on ", TT "H", ". If both are ring elements,
then the result is also a ring element. If ", TT "g", " is a
", TO "MonomialIdeal", ", then it is taken to be the matrix of generators of ", TT "g", ". Finally, if ", TT "g", " is a ", TO "GroebnerBasis", "
object, then the Gröbner basis as so far computed is used. In these latter two cases, no Gröbner bases
will be computed.",
PARA{},
"The resulting matrix ", TT "h", " is such that ", TT "f - g*h", " is the reduction of ", TT "f", " modulo a Gröbner basis
for the image of ", TT "g", ".",
PARA{},
"If the remainder ", TT "f - g*h", " is zero,
then the quotient ", TT "f//g", " satisfies the equation ", TT "f === g * (f//g)", "
and the quotient ", TT "g\\\\f", " satisfies the equation ", TT "f === g * (g\\\\f)", ".",
PARA{},
"One common use is the following. If an ideal contains 1, then we may write 1 in terms
of the generators of the ideal. First we make an ideal.",
EXAMPLE lines ///
A = ZZ/101[x,y,z]
F = x^4 - y*z*(1-x)^2 - z - y^3
I = ideal(F,diff(x,F),diff(y,F),diff(z,F))
///,
"Transposing the (row) matrix of generators of the ideal puts the generators on separate lines and shows the degrees.",
EXAMPLE lines ///
transpose gens I
///,
"Next we test whether 1 is in the ideal.",
EXAMPLE lines ///
1 % I
///,
"We see that 1 is in the ideal. Now we represent 1 in terms of the generators of ", TT "I", ".",
EXAMPLE lines ///
h = 1 // gens I
gens I * h
///,
SeeAlso => {(symbol %, Matrix, Matrix), generators, diff, substitute, quotient, remainder, quotientRemainder }
}
document {
Key => {(complement, Matrix),complement},
Headline => "find the minimal generators for cokernel of a matrix (low level form)",
TT "complement f", " -- for a matrix ", TT "f", ", return a map ", TT "g", " with the same
target whose columns are minimal generators for the cokernel of ", TT "f", ".",
PARA{},
"The map ", TT "f", " must be homogeneous."
}
-----------------------------------------------------------------------------
document {
Key => {homogenize,(homogenize, Ideal, RingElement),(homogenize, Matrix, RingElement),
(homogenize, Matrix, RingElement, List),(homogenize, Module, RingElement),
(homogenize, Module, RingElement, List),(homogenize, RingElement, RingElement),(homogenize, RingElement, RingElement, List),
(homogenize, Vector, RingElement),(homogenize, Vector, RingElement, List)},
Headline => "homogenize with respect to a variable",
TT "homogenize(m,v)", " -- homogenize the ring element, vector,
matrix, or module ", TT "m", " using the variable ", TT "v", " in the ring of ", TT "m", ".",
BR{},
TT "homogenize(m,v,w)", " -- homogenize ", TT "m", " using the variable ", TT "v", ",
so that the result is homogeneous with respect to the given list ", TT "w", " of
integers provided as weights for the variables.",
PARA{},
EXAMPLE {
"R = ZZ/101[x,y,z,Degrees => {1,2,3}]",
"f = 1 + y + z^2",
"homogenize(f,x)",
"homogenize(f,x,{1,0,-1})",
},
PARA{},
"The weights that may be used are limited (roughly) to the range -2^30 .. 2^30.",
PARA{},
Caveat => {
"If the homogenization overflows the monomial, this is not
reported as an error."
}
}
document {
Key => Ascending,
Headline => "specify ascending order",
TT "Ascending", " -- a symbol used as a value for optional
arguments ", TO "DegreeOrder", " and ", TO "MonomialOrder", "."
}
document {
Key => Descending,
Headline => "specify descending order",
TT "Descending", " -- a symbol used as a value for optional
arguments ", TO "DegreeOrder", " and ", TO "MonomialOrder", "."
}
document {
Key => DegreeOrder,
Headline => "sort primarily by degree",
TT "DegreeOrder", " -- an optional argument for use with certain
functions, used to specify sort order."
}
document {
Key => {selectInSubring,(selectInSubring, ZZ, Matrix)},
Headline => "select columns in a subring",
Usage => "selectInSubring(i,m)",
Inputs => {
"i" => ZZ,
"m" => Matrix
},
Outputs => {
Matrix => {"with the same target and ring as ", TT "m", ", consisting of those columns
of ", TT "m", " which lie in the subring where the first
", TT "i", " blocks of the monomial order are zero"}
},
"For example, consider the following block (or product) order.",
EXAMPLE lines ///
R = QQ[x,y,a..d,t,MonomialOrder=>{2,4,1}];
m = matrix{{x*a-d^2, a^3-1, x-a^100, a*b*d+t*c^3, t^3-t^2-t+1}}
selectInSubring(1,m)
selectInSubring(2,m)
///,
PARA{},
"The lexicographic order is considered as one block, as in the following example.",
EXAMPLE lines ///
S = QQ[a..d,MonomialOrder=>Lex];
m = matrix{{a^2-b, b^2-c, c^2-d, d^2-1}}
selectInSubring(1,m)
///,
PARA{},
"If you wish to be able to pick out the elements not involving a, or a and b, etc,
then create a block monomial order.",
EXAMPLE lines ///
S = QQ[a..d,MonomialOrder=>{4:1}];
m = matrix{{a^2-b, b^2-c, c^2-d, d^2-1}}
selectInSubring(1,m)
selectInSubring(2,m)
selectInSubring(3,m)
///,
Caveat => {
"This routine doesn't do what one would expect for graded orders
such as ", TT "GLex", ". There, the first part of the monomial
order is the degree, which is usually not zero."
},
SeeAlso => {"monomial orderings", leadTerm, "Elimination::eliminate"}
}
document {
Key => {divideByVariable,(divideByVariable, Matrix, RingElement),(divideByVariable, Matrix, RingElement, ZZ)},
Headline => "divide all columns by a (power of a) variable",
TT "divideByVariable(m,v)", " -- divide each column of the matrix 'm' by
as high a power of the variable 'v' as possible.",
BR{},
TT "divideByVariable(m,v,d)", " -- divide each column of the matrix 'm' by
as high a power of the variable 'v' as possible, but divide by no more than v^d.",
PARA{},
EXAMPLE {
"R = ZZ/101[a..d]",
"m = matrix{{a*b, a^2*c}, {a*b^2, a^4*d}}",
"divideByVariable(m,a)",
"divideByVariable(m,a,1)",
},
Caveat => "You can only divide by a variable, not a monomial,
and you have little control on what power will be divided. This routine is mostly
used by the saturation commands as a fast internal way of dividing.",
PARA{},
"We may eliminate this routine."
}
document {
Key => {newCoordinateSystem,(newCoordinateSystem, PolynomialRing, Matrix)},
Headline => "change variables",
TT "newCoordinateSystem(S,m)", " -- takes a one-rowed matrix ", TT "m", " of
independent linear forms over a ring ", TT "R", " and returns a pair
", TT "(f,g)", ", where ", TT "f", " is a ring map given by some linear change
of coordinates from ", TT "R", " to ", TT "S", " which sends the last variables
of ", TT"R", " to the forms in ", TT "m", ", and ", TT "g", " is the inverse
of ", TT "f", ".",
PARA{},
"The ring ", TT "S", " should have the same number of variables as
", TT "S", ".",
EXAMPLE {
"R = ZZ/101[a..d]",
"S = ZZ/101[p..s]",
"(f,g) = newCoordinateSystem(S,matrix{{a+2*b,3*c-d}});",
"f",
"g"
},
}
document {
Key => PrimitiveElement,
Headline => "specify a primitive element",
TT "PrimitiveElement => g", " -- an option used with ", TO "GF", ".",
PARA{},
"The value can be a ring element providing a primitive element, or the
symbol ", TO "FindOne", " (the default) which specifies that
", TO "GF", " should search for a primitive element."
}
document {
Key => FindOne,
Headline => "find a primitive element",
TT "FindOne", " -- a value for the option ", TO "PrimitiveElement", "
to ", TO "GF", " which specifies that ", TO "GF", " should search
for a primitive element."
}
document {
Key => Variable,
Headline => "specify a name for a variable",
-- it is also used with integralClosure, but we should automate that
TT "Variable => x", " -- an option used with ", TO "GF", ", to specify
a symbol to be used as a name for the generator of the Galois field."
}
document {
Key => GaloisField,
Headline => "the class of all Galois fields" }
document {
Key => isPrimitive,
Headline => "whether an element is a primitive element of a finite field",
TT "isPrimitive(f)", " -- Given an element ", TT "f", " in a quotient of a polynomial ring ",
TT "R", " over a finite field ", TT "K", "which is itself a finite field,
with the ring being finite dimensional over the field,
determine if ", TT "f", " generates the multiplicative group of this field.",
EXAMPLE { "R = ZZ/5[t]/(t^2+t+1);", "isPrimitive t", "isPrimitive (t-1)" }
}
document {
Key => order,
Headline => "a key used internally ",
TT "order", " -- used as a key inside finite fields under which is
stored the number of elements in the field. Intended for internal use only",
PARA{},
SeeAlso => "GaloisField"
}
-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/m2 "
-- End:
|