1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
undocumented {
(symbol SPACE, RingMap, Number)
}
document {
Key => {"powers",
(symbol ^,RingMap,ZZ)
},
Usage => "x^n",
Inputs => {
"x" => { ofClass{RingMap} },
"n" => ZZ
},
Outputs => { {"the ", TT "n", "-th power of ", TT "x"} }
}
document {
Key => {(symbol SPACE, RingMap, RingElement),
(symbol SPACE, RingMap, Ideal),
(symbol SPACE, RingMap, Matrix),
(symbol SPACE, RingMap, Vector),
(symbol SPACE, RingMap, Module),
(symbol SPACE, RingMap, ChainComplex)},
Headline => "apply a ring map",
Usage => "f X",
Inputs => {
"f" => { "a ring map from ", TT "R", " to ", TT "S", "." },
"X" => { ofClass Ideal, ", ",
ofClass Matrix, ", ",
ofClass Vector, ", ",
ofClass Module, ", or ",
ofClass ChainComplex}
},
Outputs => {
{ "the image of X under the ring map f. The result has the same type as
X, except that its ring will be S."}
},
"If ", TT "X", " is a module then it must be either free or a submodule of a free module.
If ", TT "X", " is a chain complex, then every module of ", TT "X", " must be free or a submodule of a free module.",
EXAMPLE lines ///
R = QQ[x,y];
S = QQ[t];
f = map(S,R,{t^2,t^3})
f (x+y^2)
f image vars R
f ideal (x^2,y^2)
f resolution coker vars R
///,
Caveat => {"If the rings ", TT "R", " and ", TT "S", " have different degree monoids, then the degrees of the image
might need to be changed, since Macaulay2 sometimes doesn't have enough information to
determine the image degrees of elements of a free module."},
}
document {
Key => {substitute,
(substitute, Vector, Option),
(substitute, Product, Thing),
(substitute, Matrix, List),
(substitute, Ideal, List),
(substitute, Module, Matrix),
(substitute, Matrix, Ring),
(substitute, Matrix, ZZ),
(substitute, Ideal, Ring),
(substitute, Module, Option),
(substitute,Ideal,RingFamily),
(substitute,Matrix,RingFamily),
(substitute,Module,RingFamily),
(substitute,Number,RingFamily),
(substitute,RingElement,RingFamily),
(substitute,Vector,RingFamily),
(substitute, Vector, List),
(substitute, RingElement, Matrix),
(substitute, Vector, Ring),
(substitute, RingElement, Option),
(substitute, Matrix, Matrix),
(substitute, Ideal, Matrix),
(substitute, Module, List),
(substitute, Divide, Thing),
(substitute, Module, Ring),
(substitute, Matrix, Option),
(substitute, Sum, Thing),
(substitute, Ideal, Option),
(substitute, Vector, Matrix),
(substitute, RingElement, List),
(substitute, Power, Thing),
(substitute, RingElement, Ring),
(substitute, Number, Ring)},
Headline => "substituting values for variables",
Usage => "substitute(f,v)\nsub(f,v)",
Inputs => {
"f" => {ofClass RingElement, ", ",
ofClass Matrix,", ",
ofClass Ideal,", ",
ofClass Module,", ",
ofClass Vector,", or ",
ofClass Expression, " over a ring ", TT "R"},
"v" => {ofClass Ring, ", ",
ofClass Matrix, ", ",
ofClass Option, ", or ", ofClass List, " of ", TO2{Option,"options"}}
},
Outputs => {
{"An object of the same sort as ", TT "f", ", obtained by substituting values for
the variables in the ring ", TT "R", " of ", TT "f", " using ", TT "v", "."}
},
PARA{
"A convenient abbreviation for ", TO "substitute", " is ", TT "sub", "."
},
"This function allows you to substitute values for some variables. There are three ways to describe
the kind of substitution, depending on the second argument ", TT "v", ".",
UL {
LI {
"give specific values for (some of) the variables. An option ", TT "x=>r", " specifies that a generator
", TT "x", " should be replaced by the ring element ", TT "r", ". Generators not mentioned will be preserved."
},
LI {
"give a matrix, the entries determines the values of each of the variables"
},
LI {
"give a ring, the effect will be to substitute variables with variables of the same name, into this new ring"
}
},
EXAMPLE lines ///
A = QQ[a..f]; B = QQ[a..d]; C = ZZ/101[x,y];
F = 3*a^2-b-d+101*c
///,
"The following line substitutes values for a and b, and the result is in the same ring ",
TT "B", " of ", TT "F", ".",
EXAMPLE lines ///
sub(F, {a=>1, b=>b^4})
///,
"Substitute ", TT "a", " by ", TT "x", ", ", TT "b", " by ", TT "y",
" and so on. The result is a polynomial in the ring ", TT "C", ".",
EXAMPLE lines ///
sub(F, matrix{{x,y,1,0}})
///,
"Using a ring as the second argument substitutes variables with the same name.
The following produces the polynomial ", TT "F", " in the rings ", TT "A", " and ", TT "D", ".",
EXAMPLE lines ///
sub(F, A)
D = B/(a*b*c*d);
sub(F,D)
///,
"If the values of all of the variables are in a different ring, then the result will be in that ring.",
EXAMPLE lines ///
use ring F;
sub(F, {a=>1, b=>3, c=> 1, d=>13})
///,
"If ", TT "f", " is an ideal or a submodule of a free module over ", TT "R", ", then substitution amounts to substitution
in the matrix of generators of ", TT "f", ". This is
not the same as tensor product!",
EXAMPLE lines ///
use B;
M = image(vars B ++ vars B)
N = substitute(M, {a=>b+c,c=>1})
///,
"Although we cannot use substitute directly on modules
which are not submodules, here is a useful idiom for
moving a cokernel module to another ring. One must be careful though:
the degrees of the generators might not be the desired ones.",
EXAMPLE lines ///
M' = prune M
N' = coker substitute(presentation M', {a=>b+c,c=>1})
///,
"Unevaluated expressions (i.e. from ", TO hilbertSeries, ") may also
have variables substituted in all of the ways mentioned so far.",
EXAMPLE lines ///
hf = hilbertSeries coker matrix{{a,b^3,d^5}}
hf1 = reduceHilbert hf
use ring numerator hf;
sub(hf1, T => -1)
///,
"Of course, we can change the ring too:",
EXAMPLE lines ///
sub(hf, T => a)
value oo
oo == value sub(hf1, T=>a)
///,
PARA{
"If you plan on using the same substitution over and over, it is
wise to create a ring map that will perform the same substitution.",
},
PARA{
"For example, in the first example above, we can make ", ofClass RingMap, " ", TT "G", ", and then apply
it to ", TT "F", ".",
},
EXAMPLE lines ///
use B;
G = map(B,B,{a=>1, b=>b^4})
G F
///,
Caveat => "The specified substitution is not checked to see whether
the corresponding ring homomorphism is well-defined; this may produce
surprising results, especially if rational coefficients are converted
to integer coefficients.",
SeeAlso => {RingMap, hilbertSeries, value, Expression}
}
-- document {
-- Key => NonLinear,
-- Headline => "use the algorithm which doesn't assume that the ring map is linear",
-- TT "Strategy => NonLinear", " -- an option value for the ", TO "Strategy", "
-- option to ", TO "pushForward1", "."
-- }
-- document {
-- Key => [pushForward1,StopBeforeComputation],
-- Headline => "initialize but do not begin the computation",
-- TT "StopBeforeComputation", " -- keyword for an optional argument used with
-- ", TO "pushForward1", ".",
-- PARA{},
-- "Tells whether to start the computation, with the default value
-- being ", TT "true", "."
-- }
--
-- document {
-- Key => [pushForward1,DegreeLimit],
-- Headline => "compute only up to this degree",
-- TT "DegreeLimit => n", " -- keyword for an optional argument used with
-- ", TO "pushForward1", " which specifies that the computation should halt after dealing
-- with degree ", TT "n", ".",
-- PARA{},
-- "This option is relevant only for homogeneous matrices.",
-- PARA{},
-- "The maximum degree to which to compute is computed in terms of the
-- degrees of the ring map, ", TT "f", ". For example, if ", TT "f", "
-- consists of cubics, then to find a quadratic relation, this option
-- should be set to at least 6, by specifying, for example, ",
-- TT "DegreeLimit => 6", ". The default is ", TT "infinity", ".",
-- SeeAlso => {"pushForward1", "DegreeLimit"}
-- }
--
--
-- document {
-- Key => [pushForward1,StopWithMinimalGenerators],
-- Headline => "stop when minimal generators have been determined",
-- TT "StopWithMinimalGenerators => true", " -- an option for ", TO "pushForward1", "
-- that specifies that the computation should stop as soon as a
-- complete list of minimal generators for the submodule or ideal has been
-- determined.",
-- PARA{},
-- "The value provided is simply passed on to ", TO "gb", ": see
-- ", TO [gb,StopWithMinimalGenerators], " for details."
-- }
--
-- document {
-- Key => [pushForward1,PairLimit],
-- Headline => "stop when this number of pairs is handled",
-- TT "PairLimit => n", " -- keyword for an optional argument used with
-- ", TO "pushForward1", ", which specifies that the computation should
-- be stopped after a certain number of S-pairs have been reduced."
-- }
--
-- document {
-- Key => [pushForward1,MonomialOrder],
-- Headline => "specify the elimination order to use in pushForward1",
-- TT "MonomialOrder => x", " -- a keyword for an optional argument to ", TO "pushForward1", "
-- which tells which monomial order to use for the Groebner basis computation
-- involved.",
-- PARA{},
-- "Possible values:",
-- UL {
-- (TT "MonomialOrder => EliminationOrder", " -- use the natural elimination order (the default)"),
-- (TT "MonomialOrder => ProductOrder", " -- use the product order"),
-- (TT "MonomialOrder => LexOrder", " -- use lexical order"),
-- },
-- SeeAlso => "EliminationOrder"
-- }
--
-- document {
-- Key => [pushForward1,UseHilbertFunction],
-- Headline => "whether to use knowledge of the Hilbert function",
-- TT "UseHilbertFunction => true", " -- a keyword for an optional argument to
-- ", TO "pushForward1", " which specifies whether to use the Hilbert function,
-- if one has previously been computed.",
-- PARA{},
-- "The default is to use it if possible."
-- }
-- document {
-- Key => [pushForward1,Strategy],
-- Headline => "specify which algorithm to use in the computation",
-- TT "pushForward1(f,M,Strategy => v)", " -- an option for ", TO pushForward1, "
-- which can be used to specify the strategy to be used in the computation.",
-- PARA{},
-- "The strategy option value ", TT "v", " should be one of the following.",
-- UL {
-- TO "NonLinear",
-- TO "Linear"
-- },
-- PARA{},
-- "The default is for the code to select the best strategy heuristically."
-- }
-- document {
-- Key => EliminationOrder,
-- Headline => "use the natural elimination order in a pushForward1 computation",
-- TT "EliminationOrder", " -- a value for the ", TO "MonomialOrder", "
-- option to ", TO "pushForward1", " which specifies the natural elimination
-- order be used."
-- }
|