1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
--- status: Draft
--- author(s): MES
--- notes:
document {
Key => Hom,
Headline => "module of homomorphisms"
}
document {
Key => {(Hom,Module,Module),
(Hom,Module,Ideal),
(Hom,Module,Ring),
(Hom,Ideal,Module),
(Hom,Ideal,Ideal),
(Hom,Ideal,Ring),
(Hom,Ring,Module),
(Hom,Ring,Ideal)},
Headline => "module of homomorphisms",
Usage => "Hom(M,N)",
Inputs => {
"M","N"
},
Outputs => {
Module => {"The module Hom_R(M,N), where M and N are both R-modules"}
},
PARA{
"If ", TT "M", " or ", TT "N", " is an ideal or ring, it is regarded as a module in the evident way.",
},
EXAMPLE lines ///
R = QQ[x,y]/(y^2-x^3);
M = image matrix{{x,y}}
H = Hom(M,M)
///,
PARA {
"To recover the modules used to create a Hom-module, use the function ", TO "formation", "."
},
PARA {
"Specific homomorphisms may be obtained using ", TO homomorphism, ", as follows."
},
EXAMPLE lines ///
f0 = homomorphism H_{0}
f1 = homomorphism H_{1}
///,
PARA {
"In the example above, ", TT "f0", " is the identity map, and ", TT "f1", " maps x to y and y to x^2."
},
SeeAlso => {homomorphism, Ext, compose, formation}
}
document {
Key => {(Hom,Module,ChainComplex),(Hom,ChainComplex,Module)},
Headline => "",
Usage => "Hom(M,C)\nHom(C,M)",
Inputs => {
"M",
"C"
},
Outputs => {
ChainComplex => {"The chain complex whose ", TT "i", "-th spot is ",
TT "Hom(M,C_i)", ", in the first case, or ", TT "Hom(C_(-i),M)", " in the second case"}
},
EXAMPLE lines ///
R = QQ[a..d];
C = res coker vars R
M = R^1/(a,b)
C' = Hom(C,M)
C'.dd_-1
C'.dd^2 == 0
///,
Caveat => {"Hom of two chain complexes is not yet implemented"},
SeeAlso => {resolution}
}
multidoc ///
Node
Key
(Hom,Matrix,Matrix)
Headline
induced map on Hom
Usage
Hom(f,g)
Inputs
f:
g:
Outputs
:
the map on Hom induced by the maps {\tt f} and {\tt g}
Node
Key
(Hom,Matrix,Module)
Headline
induced map on Hom
Usage
Hom(f,M)
Inputs
f:
M:
Outputs
:
the induced map on Hom
Description
Example
R = QQ[x]
f = vars R
M = image f
g = Hom(f,M)
target g
source g
Node
Key
(Hom,Module,Matrix)
Headline
induced map on Hom
Usage
Hom(M,f)
Inputs
M:
f:
Outputs
:
the induced map on Hom
Description
-- the code for Hom(Module,Matrix) is wrong, so we simplify this example temporarily
Example
R = QQ[x]
f = vars R
M = coker presentation image f
g = Hom(M,f)
target g
source g
Node
Key
(Hom,Module,ChainComplexMap)
Headline
induced map on Hom
Usage
Hom(M,f)
Inputs
M:
f:
Outputs
:
the induced map on Hom
Node
Key
(Hom,ChainComplexMap,Module)
Headline
induced map on Hom
Usage
Hom(f,M)
Inputs
M:
f:
Outputs
:
the induced map on Hom
///
document {
Key => {(Hom,CoherentSheaf,CoherentSheaf),
(Hom, SheafOfRings, SheafOfRings),
(Hom, CoherentSheaf, SheafOfRings),
(Hom, SheafOfRings, CoherentSheaf)},
Headline => "global Hom",
Usage => "Hom(F,G)",
Inputs => {
"F", "G" => {"both should be sheaves on a
projective variety or scheme ", TT "X = Proj R"},
},
Outputs => {
Module => {"over the coefficient field of ", TT "R"}
},
PARA{"If ", TT "F", " or ", TT "G", " is a sheaf of rings, it is regarded as a sheaf of modules in the evident way."},
EXAMPLE lines ///
R = QQ[a..d];
P3 = Proj R
I = monomialCurveIdeal(R,{1,3,4})
G = sheaf module I
Hom(OO_P3,G(3))
HH^0(G(3))
///,
SeeAlso => {sheafHom, Ext, sheafExt}
}
document {
Key => {(compose,Module,Module,Module), compose},
Headline => "composition as a pairing on Hom-modules",
Usage => "compose(M,N,P)",
Inputs => { "M", "N", "P" },
Outputs => { { "The map ", TT "Hom(M,N) ** Hom(N,P) -> Hom(M,P)", " provided by composition of homomorphisms." } },
PARA { "The modules should be defined over the same ring." },
PARA { "In the following example we check that the map does implement composition." },
EXAMPLE lines ///
R = QQ[x,y]
M = image vars R ++ R^2
f = compose(M,M,M);
H = Hom(M,M);
g = H_{0}
h = homomorphism g
f * (g ** g)
h' = homomorphism oo
h' === h * h
assert oo
///,
SeeAlso => {Hom, homomorphism, homomorphism'}
}
|