File: Hom-doc.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (207 lines) | stat: -rw-r--r-- 4,474 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
--- status: Draft
--- author(s): MES
--- notes: 

document { 
     Key => Hom,
     Headline => "module of homomorphisms"
     }

document { 
     Key => {(Hom,Module,Module),
	  (Hom,Module,Ideal),
	  (Hom,Module,Ring),
	  (Hom,Ideal,Module),
	  (Hom,Ideal,Ideal),
	  (Hom,Ideal,Ring),
	  (Hom,Ring,Module),
	  (Hom,Ring,Ideal)},
     Headline => "module of homomorphisms",
     Usage => "Hom(M,N)",
     Inputs => {
	  "M","N"
	  },
     Outputs => {
	  Module => {"The module Hom_R(M,N), where M and N are both R-modules"}
	  },
     PARA{
     	  "If ", TT "M", " or ", TT "N", " is an ideal or ring, it is regarded as a module in the evident way.",
	  },
     EXAMPLE lines ///
     	  R = QQ[x,y]/(y^2-x^3);
	  M = image matrix{{x,y}}
	  H = Hom(M,M)
	  ///,
     PARA {
	  "To recover the modules used to create a Hom-module, use the function ", TO "formation", "."
	  },
     PARA {      
     	  "Specific homomorphisms may be obtained using ", TO homomorphism, ", as follows."
	  },
     EXAMPLE lines ///
	  f0 = homomorphism H_{0}
	  f1 = homomorphism H_{1}
	  ///,
     PARA {
	  "In the example above, ", TT "f0", " is the identity map, and ", TT "f1", " maps x to y and y to x^2."
	  },
     SeeAlso => {homomorphism, Ext, compose, formation}
     }

document { 
     Key => {(Hom,Module,ChainComplex),(Hom,ChainComplex,Module)},
     Headline => "",
     Usage => "Hom(M,C)\nHom(C,M)",
     Inputs => {
	  "M",
	  "C"
	  },
     Outputs => {
	  ChainComplex => {"The chain complex whose ", TT "i", "-th spot is ", 
	       TT "Hom(M,C_i)", ", in the first case, or ", TT "Hom(C_(-i),M)", " in the second case"}
	  },
     EXAMPLE lines ///
     	  R = QQ[a..d];
	  C = res coker vars R
	  M = R^1/(a,b)
	  C' = Hom(C,M)
	  C'.dd_-1
	  C'.dd^2 == 0
	  ///,
     Caveat => {"Hom of two chain complexes is not yet implemented"},
     SeeAlso => {resolution}
     }

multidoc ///
Node
 Key
  (Hom,Matrix,Matrix)
 Headline
  induced map on Hom
 Usage
  Hom(f,g)
 Inputs
  f:
  g:
 Outputs
  :
   the map on Hom induced by the maps {\tt f} and {\tt g}
Node
 Key
  (Hom,Matrix,Module)
 Headline
  induced map on Hom
 Usage
  Hom(f,M)
 Inputs
  f:
  M:
 Outputs
  :
   the induced map on Hom
 Description
  Example
   R = QQ[x]
   f = vars R
   M = image f
   g = Hom(f,M)
   target g
   source g
Node
 Key
  (Hom,Module,Matrix)
 Headline
  induced map on Hom
 Usage
  Hom(M,f)
 Inputs
  M:
  f:
 Outputs
  :
   the induced map on Hom
 Description
  -- the code for Hom(Module,Matrix) is wrong, so we simplify this example temporarily
  Example
   R = QQ[x]
   f = vars R
   M = coker presentation image f
   g = Hom(M,f)
   target g
   source g
Node
 Key
  (Hom,Module,ChainComplexMap)
 Headline
  induced map on Hom
 Usage
  Hom(M,f)
 Inputs
  M:
  f:
 Outputs
  :
   the induced map on Hom
Node
 Key
  (Hom,ChainComplexMap,Module)
 Headline
  induced map on Hom
 Usage
  Hom(f,M)
 Inputs
  M:
  f:
 Outputs
  :
   the induced map on Hom
///

document { 
     Key => {(Hom,CoherentSheaf,CoherentSheaf),
	  (Hom, SheafOfRings, SheafOfRings),
	  (Hom, CoherentSheaf, SheafOfRings),
	  (Hom, SheafOfRings, CoherentSheaf)},
     Headline => "global Hom",
     Usage => "Hom(F,G)",
     Inputs => {
	  "F", "G" => {"both should be sheaves on a 
	               projective variety or scheme ", TT "X = Proj R"},
	  },
     Outputs => {
	  Module => {"over the coefficient field of ", TT "R"}
	  },
     PARA{"If ", TT "F", " or ", TT "G", " is a sheaf of rings, it is regarded as a sheaf of modules in the evident way."},
     EXAMPLE lines ///
          R = QQ[a..d];
	  P3 = Proj R
	  I = monomialCurveIdeal(R,{1,3,4})
	  G = sheaf module I
	  Hom(OO_P3,G(3))
	  HH^0(G(3))
          ///,
     SeeAlso => {sheafHom, Ext, sheafExt}
     }

document {
     Key => {(compose,Module,Module,Module), compose},
     Headline => "composition as a pairing on Hom-modules",
     Usage => "compose(M,N,P)",
     Inputs => { "M", "N", "P" },
     Outputs => { { "The map ", TT "Hom(M,N) ** Hom(N,P) -> Hom(M,P)", " provided by composition of homomorphisms." } },
     PARA { "The modules should be defined over the same ring." },
     PARA { "In the following example we check that the map does implement composition." },
     EXAMPLE lines ///
	R = QQ[x,y]
	M = image vars R ++ R^2
	f = compose(M,M,M);
	H = Hom(M,M);
	g = H_{0}
	h = homomorphism g
	f * (g ** g)
	h' = homomorphism oo
	h' === h * h
	assert oo
     ///,
     SeeAlso => {Hom, homomorphism, homomorphism'}
     }