1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
--- status: draft
--- author(s): Decker, Popescu
--- notes:
document {
Key => codim,
Headline => "compute the codimension",
SeeAlso => {dim}
}
document {
Key => {[(codim,Ideal), Generic],[(codim,Module), Generic],
[(codim,CoherentSheaf), Generic],
[(codim,PolynomialRing), Generic],[(codim,ProjectiveVariety), Generic],
[(codim,QuotientRing), Generic]},
Usage => "codim(...,Generic=>true)",
Consequences => {
"Allows the computation of the codimension to proceed without an error message, even if the ring is
defined over the integers. The computation proceeds by effectively
tensoring first with the rational numbers."
}
}
document {
Key => {(codim,QuotientRing),(codim, PolynomialRing)},
Usage => "codim R",
Inputs => {"R"},
Outputs => {ZZ => {"the codimension of ", TT "R"}},
"Computes the codimension of the presentation ideal of ", TT "R",
" over its ambient polynomial ring.",
EXAMPLE {
"R = QQ[x,y]/(ideal(x,y) * ideal(x-1))",
"codim R"
},
"However, the following may not be the expected result.",
EXAMPLE {
"R = QQ[x,y]/(ideal(x,y) * ideal(x-1))",
"codim R",
"codim (R/x)"
},
SeeAlso => {(dim,QuotientRing)}
}
document {
Key => {(codim,Module)},
Headline =>"codimension of the support of a module",
Usage => "codim M",
Inputs => {"M" => {"a module over a ring ", TT "R"}
},
Outputs => {ZZ
},
"Computes the codimension of the support of the module as given by ", TT "dim(R) - dim(M)", ".",
EXAMPLE {
"R = ZZ/101[a..d];",
"M = coker matrix{{a,b},{c,d}}",
"codim M"
},
PARA {
"The returned value is the usual codimension if ", TT "R",
" is an integral domain or, more generally, equidimensional."
},
SeeAlso => {(dim,Module)}
}
document {
Key => {(codim,CoherentSheaf)},
Headline =>"codimension of the support of a coherent sheaf on a projective variety",
Usage => "codim F",
Inputs => {"F" => {"a coherent sheaf over a ", TO "ProjectiveVariety", TT " X"}
},
Outputs => {ZZ
},
"Computes the codimension of the support of ", TT "F", " as given by ", TT "dim(R) - dim(M)",
" where ", TT "M", " is the module representing ", TT "F", " over the homogeneous coordinate ring ",
TT "R", " of ", TT "X", ".",
EXAMPLE {
"R = ZZ/31991[a,b,c,d];",
"I = monomialCurveIdeal(R,{1,3,5})",
"projplane = Proj(R)",
"II = sheaf module I",
"can = sheafExt^1(II,OO_projplane^1(-4))",
"codim can"
},
Caveat => {"The returned value is the usual codimension if ", TT "R",
" is an integral domain or, more generally, equidimensional."},
SeeAlso => {(dim,Module)}
}
document {
Key => {(codim,MonomialIdeal)},
Usage => "codim I",
Inputs => {"I"},
Outputs => {ZZ},
"Computes the codimension of the monomial ideal ", TT "I", ".",
EXAMPLE {
"R = ZZ/101[a..e];",
"codim monomialIdeal (b,c,d)",
"codim monomialIdeal (b^3,c^2)",
},
SeeAlso => {(dim,Ideal),(dim,MonomialIdeal),(codim,Ideal)}
}
document {
Key => {(codim,Ideal)},
Usage => "codim I",
Inputs => {"I"},
Outputs => {ZZ => { TT "dim(R) - dim(R/I)", ", where ", TT "R", " is the ring containing ", TT "I", "." }},
PARA {
"When R is equidimensional, this quantity is the codimension of the ideal ", TT "I", "."
},
EXAMPLE {
"R = ZZ/101[a..e];",
"I = monomialCurveIdeal(R,{2,3,5,7})",
"J = ideal presentation singularLocus(R/I);",
"codim J",
"radical J"
},
"The following may not be the expected result, because the ring is not equidimensional.",
EXAMPLE {
"R = QQ[x,y]/(ideal(x,y) * ideal(x-1))",
"codim ideal(x,y)"
},
SeeAlso => {(dim,Ideal),(dim,MonomialIdeal),(codim,MonomialIdeal)}
}
document {
Key => (codim,ProjectiveVariety),
Headline => "codimension of the projective variety",
Usage => "codim V",
Inputs => {"V"
},
Outputs => {ZZ
},
"Computes the codimension of the projective variety ", TT "V", ".",
EXAMPLE {
"R = ZZ/101[x_0..x_3];",
"M = matrix{{x_0,x_1,x_2},{x_1,x_2,x_3}}",
"V = Proj(R/minors(2,M));",
"codim V"
},
Caveat => {"The returned value is the usual codimension if the base graded ring
is an integral domain or, more generally, equidimensional."},
SeeAlso => {(codim,QuotientRing)}
}
|